Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Module d'élasticité isostatique — Wikipédia
Module d'élasticité isostatique — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.

Cet article concernant la physique doit être recyclé (mai 2015).

Une réorganisation et une clarification du contenu paraissent nécessaires. Améliorez-le, discutez des points à améliorer ou précisez les sections à recycler en utilisant {{section à recycler}}.

Le module d'élasticité isostatique[1] (en anglais : bulk modulus) est la constante qui relie la contrainte au taux de déformation d'un matériau isotrope soumis à une compression isostatique.

Expression

[modifier | modifier le code]

Généralement noté K {\displaystyle K} {\displaystyle K} ( B {\displaystyle B} {\displaystyle B} en anglais), le module d'élasticité isostatique permet d'exprimer la relation de proportionnalité entre le premier invariant du tenseur des contraintes et le premier invariant du tenseur des déformations :

Module d'élasticité isostatique
de quelques matériaux
Air 101 kPa (isotherme)
(142 kPa en adiabatique)
Eau 2,2 GPa (augmente avec la pression)
Verre 35 à 55 GPa
Acier 160 GPa
Diamant 442 GPa
s = K e {\displaystyle s=K\,e} {\displaystyle s=K\,e}

où :

  • s = ∑ i 1 3 σ i i {\displaystyle s=\sum _{i}{\frac {1}{3}}\sigma _{ii}} {\displaystyle s=\sum _{i}{\frac {1}{3}}\sigma _{ii}} est la contrainte isostatique (en unité de pression) ;
  • K {\displaystyle K} {\displaystyle K} est le module d'élasticité isostatique (en unité de pression) ;
  • e = ∑ i ε i i = ε 11 + ε 22 + ε 33 {\displaystyle e=\sum _{i}\varepsilon _{ii}=\varepsilon _{11}+\varepsilon _{22}+\varepsilon _{33}} {\displaystyle e=\sum _{i}\varepsilon _{ii}=\varepsilon _{11}+\varepsilon _{22}+\varepsilon _{33}} est le taux de déformation isostatique[2] (sans dimension).

Il s'exprime, respectivement vis-à-vis des coefficients de Lamé ou du module de Young et du coefficient de Poisson, par :

K = λ + 2 3 μ = 1 3 E ( 1 − 2 ν ) {\displaystyle K=\lambda +{\frac {2}{3}}\,\mu ={\frac {1}{3}}\,{\frac {E}{(1-2\nu )}}} {\displaystyle K=\lambda +{\frac {2}{3}}\,\mu ={\frac {1}{3}}\,{\frac {E}{(1-2\nu )}}}.

Notes :

  • pour ν = 1 / 3 {\displaystyle \nu =1/3} {\displaystyle \nu =1/3}, K = E {\displaystyle K=E} {\displaystyle K=E} ;
  • pour ν → 1 / 2 {\displaystyle \nu \to 1/2} {\displaystyle \nu \to 1/2}, K → + ∞ {\displaystyle K\to +\infty } {\displaystyle K\to +\infty } (incompressibilité).

Les matériaux métalliques sont proches du premier cas ( K ≈ E {\displaystyle K\approx E} {\displaystyle K\approx E} dans leur domaine élastique) alors que les élastomères s'approchent d'un comportement incompressible ( K ≫ E {\displaystyle K\gg E} {\displaystyle K\gg E}).

On peut aussi exprimer K {\displaystyle K} {\displaystyle K} en fonction des modules d'élasticité en traction E {\displaystyle E} {\displaystyle E} et en cisaillement G {\displaystyle G} {\displaystyle G} :

1 K = 9 E − 3 G {\displaystyle {\frac {1}{K}}={\frac {9}{E}}-{\frac {3}{G}}} {\displaystyle {\frac {1}{K}}={\frac {9}{E}}-{\frac {3}{G}}}.

Le module d'élasticité isostatique représente la relation de proportionnalité entre la pression et le taux de variation du volume :

Δ P = − K Δ V V 0 {\displaystyle \Delta P=-K\,{\frac {\Delta V}{V_{0}}}} {\displaystyle \Delta P=-K\,{\frac {\Delta V}{V_{0}}}}.

C'est l'inverse de la compressibilité isotherme χ T {\displaystyle \chi _{T}} {\displaystyle \chi _{T}}, définie en thermodynamique par :

1 K = χ T = − 1 V ( ∂ V ∂ P ) T {\displaystyle {\frac {1}{K}}=\chi _{T}=-{\frac {1}{V}}\,\left({\frac {\partial V}{\partial P}}\right)_{T}} {\displaystyle {\frac {1}{K}}=\chi _{T}=-{\frac {1}{V}}\,\left({\frac {\partial V}{\partial P}}\right)_{T}}

Notes et références

[modifier | modifier le code]
  1. ↑ Synonymes : module d'élasticité à la compression isostatique, module de rigidité à la compression, module d'élasticité cubique, module d'incompressibilité, module de compression hydrostatique, module de dilatation volumique, module d'élasticité volumique, etc.
  2. ↑ Synonyme : taux de dilatation cubique.

Voir aussi

[modifier | modifier le code]

Bibliographie

[modifier | modifier le code]
  • P. Germain, Mécanique des milieux continus, 1962, Masson et Cie.
  • G. Duvaut, Mécanique des milieux continus, 1990, Masson.

Articles connexes

[modifier | modifier le code]
  • Coefficients calorimétriques et thermoélastiques
  • Dynamique des fluides
  • Écoulement incompressible
  • Fluide incompressible
  • Relation de Reech
v · m
Modules d'élasticité pour des matériaux homogènes et isotropes
  • Module d'Young (E)
  • Module de cisaillement (G)
  • Module d'élasticité isostatique (K)
  • Premier coefficient de Lamé (λ)
  • Coefficient de Poisson (ν)
  • Module d'onde de compression (M, P-wave modulus)
Formules de conversion
Les propriétés élastiques des matériaux homogènes, isotropes et linéaires sont déterminées de manière unique par deux modules quelconques parmi ceux-ci. Ainsi, on peut calculer chacun à partir de deux d'entre eux en utilisant ces formules.

formules en 3D

( λ , G ) {\displaystyle (\lambda ,G)} {\displaystyle (\lambda ,G)}

( E , G ) {\displaystyle (E,G)} {\displaystyle (E,G)}

( K , λ ) {\displaystyle (K,\lambda )} {\displaystyle (K,\lambda )}

( K , G ) {\displaystyle (K,G)} {\displaystyle (K,G)}

( λ , ν ) {\displaystyle (\lambda ,\nu )} {\displaystyle (\lambda ,\nu )}

( G , ν ) {\displaystyle (G,\nu )} {\displaystyle (G,\nu )}

( E , ν ) {\displaystyle (E,\nu )} {\displaystyle (E,\nu )}

( K , ν ) {\displaystyle (K,\nu )} {\displaystyle (K,\nu )}

( K , E ) {\displaystyle (K,E)} {\displaystyle (K,E)}

( M , G ) {\displaystyle (M,G)} {\displaystyle (M,G)}

K [ P a ] = {\displaystyle K\,[\mathrm {Pa} ]=} {\displaystyle K\,[\mathrm {Pa} ]=}

λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} {\displaystyle \lambda +{\tfrac {2G}{3}}}

E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} {\displaystyle {\tfrac {EG}{3(3G-E)}}}

 

 

λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}

2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}

E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} {\displaystyle {\tfrac {E}{3(1-2\nu )}}}

 

 

M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} {\displaystyle M-{\tfrac {4G}{3}}}

E [ P a ] = {\displaystyle E\,[\mathrm {Pa} ]=} {\displaystyle E\,[\mathrm {Pa} ]=}

G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}

 

9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}

9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} {\displaystyle {\tfrac {9KG}{3K+G}}}

λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}

2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} {\displaystyle 2G(1+\nu )\,}

 

3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,} {\displaystyle 3K(1-2\nu )\,}

 

G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} {\displaystyle {\tfrac {G(3M-4G)}{M-G}}}

λ [ P a ] = {\displaystyle \lambda \,[\mathrm {Pa} ]=} {\displaystyle \lambda \,[\mathrm {Pa} ]=}

 

G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} {\displaystyle {\tfrac {G(E-2G)}{3G-E}}}

 

K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} {\displaystyle K-{\tfrac {2G}{3}}}

 

2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} {\displaystyle {\tfrac {2G\nu }{1-2\nu }}}

E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}

3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} {\displaystyle {\tfrac {3K\nu }{1+\nu }}}

3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}

M − 2 G {\displaystyle M-2G} {\displaystyle M-2G}

G [ P a ] = {\displaystyle G\,[\mathrm {Pa} ]=} {\displaystyle G\,[\mathrm {Pa} ]=}

 

 

3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} {\displaystyle {\tfrac {3(K-\lambda )}{2}}}

 

λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}

 

E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} {\displaystyle {\tfrac {E}{2(1+\nu )}}}

3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}

3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}} {\displaystyle {\tfrac {3KE}{9K-E}}}

 

ν [ 1 ] = {\displaystyle \nu \,[1]=} {\displaystyle \nu \,[1]=}

λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}

E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1} {\displaystyle {\tfrac {E}{2G}}-1}

λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} {\displaystyle {\tfrac {\lambda }{3K-\lambda }}}

3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}

 

 

 

 

3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} {\displaystyle {\tfrac {3K-E}{6K}}}

M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}} {\displaystyle {\tfrac {M-2G}{2M-2G}}}

M [ P a ] = {\displaystyle M\,[\mathrm {Pa} ]=} {\displaystyle M\,[\mathrm {Pa} ]=}

λ + 2 G {\displaystyle \lambda +2G} {\displaystyle \lambda +2G}

G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}} {\displaystyle {\tfrac {G(4G-E)}{3G-E}}}

3 K − 2 λ {\displaystyle 3K-2\lambda \,} {\displaystyle 3K-2\lambda \,}

K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}} {\displaystyle K+{\tfrac {4G}{3}}}

λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}

2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}} {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}

E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}} {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}

3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}} {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}

3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}} {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}

 

formules en 2D

( λ 2 D , G 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },G_{\mathrm {2D} })} {\displaystyle (\lambda _{\mathrm {2D} },G_{\mathrm {2D} })}

( E 2 D , G 2 D ) {\displaystyle (E_{\mathrm {2D} },G_{\mathrm {2D} })} {\displaystyle (E_{\mathrm {2D} },G_{\mathrm {2D} })}

( K 2 D , λ 2 D ) {\displaystyle (K_{\mathrm {2D} },\lambda _{\mathrm {2D} })} {\displaystyle (K_{\mathrm {2D} },\lambda _{\mathrm {2D} })}

( K 2 D , G 2 D ) {\displaystyle (K_{\mathrm {2D} },G_{\mathrm {2D} })} {\displaystyle (K_{\mathrm {2D} },G_{\mathrm {2D} })}

( λ 2 D , ν 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\nu _{\mathrm {2D} })} {\displaystyle (\lambda _{\mathrm {2D} },\nu _{\mathrm {2D} })}

( G 2 D , ν 2 D ) {\displaystyle (G_{\mathrm {2D} },\nu _{\mathrm {2D} })} {\displaystyle (G_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( E 2 D , ν 2 D ) {\displaystyle (E_{\mathrm {2D} },\nu _{\mathrm {2D} })} {\displaystyle (E_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( K 2 D , ν 2 D ) {\displaystyle (K_{\mathrm {2D} },\nu _{\mathrm {2D} })} {\displaystyle (K_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( K 2 D , E 2 D ) {\displaystyle (K_{\mathrm {2D} },E_{\mathrm {2D} })} {\displaystyle (K_{\mathrm {2D} },E_{\mathrm {2D} })}

( M 2 D , G 2 D ) {\displaystyle (M_{\mathrm {2D} },G_{\mathrm {2D} })} {\displaystyle (M_{\mathrm {2D} },G_{\mathrm {2D} })}

K 2 D [ N / m ] = {\displaystyle K_{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle K_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

λ 2 D + G 2 D {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }} {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}

G 2 D E 2 D 4 G 2 D − E 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }E_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {G_{\mathrm {2D} }E_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

 

λ 2 D ( 1 + ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}

G 2 D ( 1 + ν 2 D ) 1 − ν 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}

E 2 D 2 ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}} {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}

 

 

M 2 D − G 2 D {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }} {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}

E 2 D [ N / m ] = {\displaystyle E_{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle E_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

4 G 2 D ( λ 2 D + G 2 D ) λ 2 D + 2 G 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}

 

4 K 2 D ( K 2 D − λ 2 D ) 2 K 2 D − λ 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}

4 K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}

λ 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}

2 G 2 D ( 1 + ν 2 D ) {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,} {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}

 

2 K 2 D ( 1 − ν 2 D ) {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })} {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}

 

4 G 2 D ( M 2 D − G 2 D ) M 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}

λ 2 D [ N / m ] = {\displaystyle \lambda _{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle \lambda _{\mathrm {2D} }\,[\mathrm {N/m} ]=}

 

2 G 2 D ( E 2 D − 2 G 2 D ) 4 G 2 D − E 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

K 2 D − G 2 D {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }} {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}

 

2 G 2 D ν 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}

E 2 D ν 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}} {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}

2 K 2 D ν 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}

2 K 2 D ( 2 K 2 D − E 2 D ) 4 K 2 D − E 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

M 2 D − 2 G 2 D {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }} {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }}

G 2 D [ N / m ] = {\displaystyle G_{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle G_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

 

 

K 2 D − λ 2 D {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }} {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}

 

λ 2 D ( 1 − ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}

 

E 2 D 2 ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}} {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}

K 2 D ( 1 − ν 2 D ) 1 + ν 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}

K 2 D E 2 D 4 K 2 D − E 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

ν 2 D [ 1 ] = {\displaystyle \nu _{\mathrm {2D} }\,[1]=} {\displaystyle \nu _{\mathrm {2D} }\,[1]=}

λ 2 D λ 2 D + 2 G 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}

E 2 D 2 G 2 D − 1 {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1} {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}

λ 2 D 2 K 2 D − λ 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}

K 2 D − G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}

 

 

 

 

2 K 2 D − E 2 D 2 K 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}} {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}

M 2 D − 2 G 2 D M 2 D {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}} {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}

M 2 D [ N / m ] = {\displaystyle M_{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle M_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

λ 2 D + 2 G 2 D {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }} {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}

4 G 2 D 2 4 G 2 D − E 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

2 K 2 D − λ 2 D {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }} {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}

K 2 D + G 2 D {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }} {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}

λ 2 D ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}

2 G 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}

E 2 D ( 1 − ν 2 D ) ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1-\nu _{\mathrm {2D} })(1+\nu _{\mathrm {2D} })}}} {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1-\nu _{\mathrm {2D} })(1+\nu _{\mathrm {2D} })}}}

2 K 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}

4 K 2 D 2 4 K 2 D − E 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

  • icône décorative Portail de la physique
  • icône décorative Portail des sciences des matériaux
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Module_d%27élasticité_isostatique&oldid=225530196 ».
Catégorie :
  • Élasticité
Catégories cachées :
  • Article à recycler/Liste complète
  • Article à recycler/physique
  • Portail:Physique/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Matériaux/Articles liés
  • Portail:Technologies/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id