Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Boosting — Wikipédia
Boosting — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.

Cet article est une ébauche concernant les probabilités et la statistique.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.
Boosting
Type
Métaheuristique, apprentissage ensemblisteVoir et modifier les données sur Wikidata
Aspect de
Apprentissage superviséVoir et modifier les données sur Wikidata

modifier - modifier le code - modifier WikidataDocumentation du modèle

Le boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances.

Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.

On appelle apprenant faible un algorithme qui fournit des classifieurs faibles, capables de reconnaître deux classes au moins aussi bien que le hasard ne le ferait (c’est-à-dire qu'il ne se trompe pas plus d'une fois sur deux en moyenne, si la distribution des classes est équilibrée). Le classifieur fourni est pondéré par la qualité de sa classification : mieux il classe, plus il sera important. Les exemples mal classés sont boostés pour qu'ils aient davantage d'importance vis-à-vis de l'apprenant faible au prochain tour, afin qu'il pallie le manque.

Un des algorithmes les plus utilisés en boosting s'appelle AdaBoost, abréviation de adaptative boosting.

Le boosting s'appuie sur la théorie de l'apprentissage PAC.

Principales méthodes liées au boosting

[modifier | modifier le code]
  • Bootstraping
  • Bagging
  • Boosting
  • AdaBoost
  • DiscreteAB
  • RealAB
  • GentleAB
  • WeightBoost
  • BrownBoost (en)
  • LogitBoost (en)
  • LPBoost (en)
  • AsymBoost
  • KLBoost
  • FloatBoost
  • GloBoost
  • RankBoost
  • xgboost

La méthode AdaBoost peut être vue comme un cas particulier de la méthode des poids multiplicatifs.

Autres méthodes apparentées

[modifier | modifier le code]
  • ADDEMUP
  • arcing : adaptive recombination of classifiers
  • bagging : bootstrap aggregation
  • bag-stacking : bagging plus stacking
  • cascading
  • combination of classifiers
  • committees of networks
  • consensus theory
  • cragging : cross aggregation (like k-fold cross validation)
  • dagging : disjoint-sample aggregation
  • dag-stacking : dagging plus stacking
  • classifieurs basé sur le principe diviser pour régner (divide and conquer)
  • hagging : half-sample aggregation
  • mélange d'experts (en)
  • multiple classifier systems
  • classifieurs multi-stage et multi-level
  • OLC : optimal linear combination
  • pandemonium of reflective agents
  • sieving algorithms
  • stacking : utiliser les sorties de plusieurs modèles (avec en option les entrées initiales) comme entrées d'un nouveau modèle (de deuxième niveau)
  • voting

Liens

[modifier | modifier le code]
  • Fabien Torre, notes de cours en apprentissage automatique, université de Lille
  • Exemple d'application: Méthode de Viola et Jones

Liens externes

[modifier | modifier le code]

  • Ressource relative à la santéVoir et modifier les données sur Wikidata :
    • Medical Subject Headings
  • Notice dans un dictionnaire ou une encyclopédie généralisteVoir et modifier les données sur Wikidata :
    • Britannica
  • Notices d'autoritéVoir et modifier les données sur Wikidata :
    • LCCN
    • Israël
v · m
Apprentissage automatique et exploration de données
Paradigmes
  • Apprentissage supervisé
  • Auto-supervisé
  • Semi-supervisé
  • Non supervisé
  • Apprentissage par renforcement
  • Transfert
  • Incrémental
Problèmes
  • Classement
  • Clustering
  • Détection d'anomalies
  • Optimisation en ligne
  • Modèle génératif
  • Régression
  • Règle d'association
  • Réduction de dimensions
    • Analyse factorielle
    • Sélection de caractéristique
    • Extraction de caractéristique
Supervisé
Classement
  • Arbre de décision
  • k-NN
  • U-matrix
  • CRF
  • Régression logistique
Régression
  • Modèle linéaire généralisé
    • Régression linéaire
    • Régression de Poisson
    • Modèle probit
  • Analyse discriminante linéaire
  • Machine à vecteurs de support
Prédiction structurée
  • Modèle graphique
    • Classification naïve bayésienne
    • Réseau bayésien
    • Modèle de Markov caché
Réseau de neurones
artificiels
  • Récurrents
    • Rétropropagation à travers le temps
    • Calcul par réservoir
  • à action directe
    • Rétropropagation du gradient
    • Apprentissage profond
    • Perceptron
    • Perceptron multicouche
    • Réseau neuronal convolutif
    • Attention
  • Réseau de neurones à impulsions
Non supervisé et
auto-supervisé
Découverte de structures
  • Clustering
    • Regroupement hiérarchique
    • K-moyennes
    • Algorithme espérance-maximisation
    • DBSCAN
    • OPTICS
  • Règle d'association
Réduction de dimensions
  • ACP
  • ACP à noyaux
  • Analyse en composantes indépendantes
  • Analyse canonique des corrélations
  • Analyse canonique à noyaux
  • t-SNE
  • Réseau de neurones artificiels
    • Auto-encodeur
IA générative
et modèle génératif
  • Réseau de neurones artificiels
    • Réseaux antagonistes génératifs
      • Classique
      • de Wasserstein)
    • Auto-encodeur variationnel
    • Réseau de Hopfield
    • Machine de Boltzmann restreinte
    • Cartes de Kohonen
    • Transformeur
Métaheuristique
d'optimisation
  • Stratégie d'évolution et génétique
    • NEAT
    • HyperNEAT
  • Essaims
  • Apprentissage ensembliste
    • Forêts aléatoires
    • Boosting
Théorie
  • Apprentissage PAC
  • Complexité de Rademacher
  • Dilemme biais-variance
  • Hypothèse de la variété
  • Théorie de Vapnik-Chervonenkis
    • Pulvérisation
    • Dimension de Vapnik-Chervonenkis
  • Théorème de Cover
Logiciels
  • Keras
  • Microsoft Cognitive Toolkit
  • Scikit-learn
  • TensorFlow
  • Theano
  • Weka
  • PyTorch
v · m
Optimisation: théorie et algorithmes
Non linéaire
  • Méthode du nombre d'or
  • Recherche linéaire
  • Méthode de Nelder-Mead
  • Critères de Wolfe
  • Méthode de Broyden-Fletcher-Goldfarb-Shanno
  • Algorithme à régions de confiance
  • Pénalisation
  • Algorithme du gradient
  • Algorithme du gradient stochastique
  • Méthode de Newton
  • Algorithme de Gauss-Newton
  • Algorithme de Levenberg-Marquardt
  • Algorithme du lagrangien augmenté
Convexe
  • Optimisation complètement positive
  • Optimisation copositive
  • Optimisation SDP
  • Méthode des plans sécants
  • Algorithme de Frank-Wolfe
  • Méthode de l'ellipsoïde
Linéaire
  • Optimisation conique
  • Algorithme du simplexe
  • Méthodes de points intérieurs
  • Décomposition de Benders
  • Génération de colonnes
Quadratique
  • Optimisation quadratique successive
Combinatoire
  • Algorithme d'approximation
  • Programmation dynamique
  • Algorithme glouton
  • Optimisation linéaire en nombres entiers
Métaheuristique
  • Stratégie d'évolution
    • Algorithme génétique
  • Essaims
  • Forêts aléatoires
  • Boosting
  • icône décorative Portail de l'informatique théorique
  • icône décorative Portail des probabilités et de la statistique
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Boosting&oldid=223362319 ».
Catégories :
  • Algorithme de classification
  • Apprentissage automatique
  • Exploration de données
Catégories cachées :
  • Wikipédia:ébauche probabilités et statistiques
  • Page utilisant P279
  • Page utilisant P1269
  • Article à illustrer Méthode scientifique
  • Article utilisant l'infobox Méthode scientifique
  • Article utilisant une Infobox
  • Article contenant un appel à traduction en anglais
  • Page utilisant P486
  • Page pointant vers des bases externes
  • Page pointant vers des bases relatives à la santé
  • Page utilisant P1417
  • Page pointant vers des dictionnaires ou encyclopédies généralistes
  • Article de Wikipédia avec notice d'autorité
  • Portail:Informatique théorique/Articles liés
  • Portail:Informatique/Articles liés
  • Portail:Mathématiques/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Probabilités et statistiques/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id