Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Espace normal — Wikipédia
Espace normal — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Un espace topologique séparé X est dit normal lorsque, pour tous fermés disjoints E et F de X, il existe des ouverts disjoints U et V tels que U contienne E et V, F.

En mathématiques, un espace normal est un espace topologique vérifiant un axiome de séparation plus fort que la condition usuelle d'être un espace séparé. Cette définition est à la base de résultats comme le lemme d'Urysohn ou le théorème de prolongement de Tietze. Tout espace métrisable est normal.

Définition

[modifier | modifier le code]

Soit X un espace topologique. On dit que X est normal[1] s'il est séparé et s'il vérifie de plus l'axiome de séparation T4[2] :

pour tous fermés disjoints F et G, il existe deux ouverts disjoints U et V tels que F soit inclus dans U et G dans V.

Exemples

[modifier | modifier le code]
  • Tout espace topologique métrisable est normal[3].
    En effet, il est parfaitement normal, ce qui entraîne qu'il est normal et même complètement normal.
    Par exemple : ℝn muni de sa topologie usuelle est normal.
  • Tout ensemble totalement ordonné, muni de la topologie de l'ordre, est (complètement) normal car (héréditairement) collectivement normal et même monotonement normal.
  • Tout espace compact est normal[4]. Plus généralement, tout espace paracompact est collectivement normal.
  • Un exemple d'espace compact non complètement normal est la planche de Tychonoff. En effet, la planche de Tychonoff épointée n'est pas normale (bien que localement compacte).

Propriétés

[modifier | modifier le code]

Propriétés élémentaires

[modifier | modifier le code]
  • Si deux espaces topologiques sont homéomorphes et si l'un d'eux est normal, l'autre l'est aussi.En effet la propriété d'être normal est, comme tous les axiomes de séparation, formulée de façon à être invariante par homéomorphisme.
  • Tout fermé d'un espace normal est normal (pour la topologie induite).Cette seconde assertion est, elle aussi, « immédiate, à partir de la remarque qu'une partie fermée d'un sous-espace fermé est aussi fermée dans l'espace entier[5] ».

Conditions nécessaires et suffisantes

[modifier | modifier le code]

Il existe de nombreuses caractérisations de la propriété T4 (donc de la normalité, quand on impose de plus à l'espace d'être séparé). Ces caractérisations sont à l'origine des propriétés donnant de la valeur à la définition. Citons-en trois, dont la première n'est qu'une reformulation élémentaire mais les deux autres sont bien plus techniques :

  • Un espace topologique X est T4 si, et seulement si, pour tout fermé F de X et tout ouvert O contenant F, il existe un ouvert U contenant F tel que l'adhérence de U soit incluse dans O[6] :
F ⊂ U ⊂ U ¯ ⊂ O . {\displaystyle F\subset U\subset {\overline {U}}\subset O.} {\displaystyle F\subset U\subset {\overline {U}}\subset O.}
Démonstration

Soit F un fermé de X. La donnée d'un fermé G disjoint de F équivaut, par passage au complémentaire, à celle d'un ouvert O contenant F.

  • Si U et V sont deux ouverts disjoints tels que F est inclus dans U et G dans V, alors le complémentaire de V est un fermé, qui contient U donc U, et qui est inclus dans O.
  • Réciproquement, si U est un ouvert contenant F et si U est inclus dans O, alors le complémentaire de U est un ouvert contenant G et disjoint de U.
  • Lemme d'Urysohn : Un espace topologique X est T4 si, et seulement si, pour tous fermés disjoints F et G de X, il existe une fonction continue qui vaut 0 sur F et 1 sur G.
  • Théorème de prolongement de Tietze : Pour un espace topologique X, les trois propositions suivantes sont équivalentes :
    • X est T4 ;
    • pour tout fermé F de X et toute application continue f de F dans ℝ, il existe une application continue de X dans ℝ qui prolonge f ;
    • pour tout fermé F de X et toute application continue f de F dans un segment réel [–M, M], il existe une application continue de X dans [–M, M] qui prolonge f.
  • Un espace X est T4 (si et) seulement si tout recouvrement ouvert localement fini de X possède une partition de l'unité subordonnée.

Condition suffisante de non-normalité

[modifier | modifier le code]

Lemme de Jones (de)[7],[8] — Pour qu'un espace séparable ne soit pas normal, il suffit qu'il contienne un sous-espace fermé discret ayant la puissance du continu.

Démonstration

Soit X un espace séparable, c'est-à-dire contenant un sous-ensemble dénombrable dense D. Toute application continue de X dans ℝ est alors déterminée par sa restriction à D, donc l'ensemble de ces applications est de cardinal inférieur ou égal à |ℝ||D| = (2ℵ0)ℵ0 = 2ℵ0.

Soit F un fermé discret de cardinal 2ℵ0. L'ensemble des applications continues de F dans ℝ est alors de cardinal 2(2ℵ0) > 2ℵ0, donc elles ne sont pas toutes continûment prolongeables à X.

D'après le théorème de prolongement de Tietze, X n'est donc pas normal.

Par cet argument, le plan de Sorgenfrey et le plan de Moore ne sont pas normaux.

La non-normalité du plan de Sorgenfrey prouve que le produit de deux espaces normaux n'est pas toujours normal (voir aussi : Droite de Michael).

Histoire

[modifier | modifier le code]

Cette notion provient du mathématicien Heinrich Tietze et date de 1923[9]. Nicolas Bourbaki précise à son sujet : « Les travaux récents ont mis en évidence que, dans ce genre de question (topologie algébrique), la notion d'espace normal est peu maniable, parce qu'elle offre trop de possibilités de « pathologie » ; on doit le plus souvent lui substituer la notion plus restrictive d'espace paracompact, introduite en 1944 par J. Dieudonné[9]. »

Notes et références

[modifier | modifier le code]
  1. ↑ Serge Lang, Analyse Réelle, Paris, InterEditions, 1977, 230 p. (ISBN 978-2-7296-0059-4).
  2. ↑ Il suffit pour cela qu'il vérifie T1 et T4.
  3. ↑ F. Paulin Topologie, analyse et calcul différentiel, École Normale supérieure (2008-2009), p. 38.
  4. ↑ Lang 1977, p. 30.
  5. ↑ (en) James Dugundji, Topology, Allyn & Bacon, 1966, 447 p. (ISBN 978-0-697-06889-7, lire en ligne), p. 145.
  6. ↑ Lang 1977, p. 36.
  7. ↑ (en) F. Burton Jones (en), « Concerning normal and completely normal spaces », Bull. Amer. Math. Soc., vol. 43, no 10,‎ 1937, p. 671-677 (lire en ligne).
  8. ↑ (en) Peter J. Nyikos, « A history of the normal Moore space problem », dans C. E. Aull et R. Lowen, Handbook of the History of General Topology, vol. 3, Springer, 2001 (ISBN 978-0-79236970-7, lire en ligne), p. 1179-1212 : p. 1183.
  9. ↑ a et b Nicolas Bourbaki, Éléments d'histoire des mathématiques [détail des éditions], éd. 2006, p. 205-206 ou N. Bourbaki, Éléments de mathématique, livre III : Topologie générale [détail des éditions], p. IX.128.

Voir aussi

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]
  • Espace de Dowker (en)
  • Espace de Moore (topologie)
  • Conjectures de Morita (en)
  • Théorème d'insertion de Katětov-Tong (en)
  • Théorème de Phragmén-Brouwer

Ouvrage

[modifier | modifier le code]

(en) Michael Henle, A Combinatorial Introduction to Topology, Dover Publications, 1994, 310 p. (ISBN 978-0-486-67966-2, lire en ligne)

Lien externe

[modifier | modifier le code]

(en) P. S. Aleksandrov, « Normal space », dans Michiel Hazewinkel, Encyclopædia of Mathematics, Springer, 2002 (ISBN 978-1556080104, lire en ligne)

v · m
Axiomes de séparation
  • Espace de Kolmogorov (T0)
  • Espace symétrique (R0)
  • Espace accessible (T1)
  • Espace séparé (T2)
  • Espace régulier (T3)
  • Espace complètement régulier (T3 ½)
  • Espace normal (T5)
  • icône décorative Portail des mathématiques
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Espace_normal&oldid=228446704 ».
Catégorie :
  • Propriété d'espace topologique
Catégories cachées :
  • Article contenant un appel à traduction en anglais
  • Article contenant un appel à traduction en allemand
  • Portail:Mathématiques/Articles liés
  • Portail:Sciences/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id