Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Facteur direct d'un module — Wikipédia
Facteur direct d'un module — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.

Cet article est une ébauche concernant l’algèbre.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.

Cet article ne cite pas suffisamment ses sources (janvier 2023).

Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ».

En pratique : Quelles sources sont attendues ? Comment ajouter mes sources ?

Soit M un A-module. Deux sous-modules N et P sont supplémentaires lorsque M est somme directe de N et P. Ceci équivaut évidemment à :

M = N + P {\displaystyle \quad M=N+P} {\displaystyle \quad M=N+P} et N ∩ P = { 0 } {\displaystyle \quad N\cap P=\{0\}} {\displaystyle \quad N\cap P=\{0\}}

Un sous-module N d'un A-module M est facteur direct s'il possède un supplémentaire.

Propriétés

[modifier | modifier le code]
  • Si N est un facteur direct de M, alors tous ses supplémentaires sont isomorphes au quotient M/N.
  • Soit N un sous-module de M. Si M/N est libre, alors N est facteur direct.
  • Pour que N soit facteur direct de M, il faut et il suffit qu'il existe un endomorphisme p de M (appelé projecteur) vérifiant les deux conditions suivantes :
    • p ( M ) = N {\displaystyle \quad p(M)=N} {\displaystyle \quad p(M)=N}
    • p 2 = p {\displaystyle \quad p^{2}=p} {\displaystyle \quad p^{2}=p}
  • Soient F et S deux sous-modules d'un A-module M. Si S est simple, alors S ⊂ F {\displaystyle \quad S\subset F} {\displaystyle \quad S\subset F} ou S ∩ F = { 0 } {\displaystyle S\cap F=\{0\}} {\displaystyle S\cap F=\{0\}}.
  • Pour qu'un A-module soit semi-simple, il faut et il suffit que tous ses sous-modules soient facteurs directs. C'est toujours le cas si A est un corps.

Notes et références

[modifier | modifier le code]

Voir aussi

[modifier | modifier le code]
  • Sous-espace supplémentaire
v · m
Théorie des anneaux
Structures
  • Anneau unitaire
  • Pseudo-anneau
  • Demi-anneau
  • Anneau commutatif
  • Anneau de polynômes
  • Ordre
  • Algèbre de Weyl
  • Idéal
  • Corps des fractions
  • Module sur un anneau
  • Algèbre sur un anneau
  • Catégorie des anneaux
  • Spectre
Propriétés arithmétiques
  • Anneau adélique
  • Anneau local
  • Anneau de Dedekind (non commutatif)
  • Anneau sans diviseur de zéro
  • Anneau principal (non commutatif)
  • Anneau euclidien (non commutatif)
  • Anneau factoriel
  • Anneau à PGCD
  • Anneau de Bézout
  • Anneau de Schreier
  • Anneau de Goldman
  • Anneau intègre
  • Anneau de valuation discrète
  • Anneau d'Ore
  • Anneau réduit
  • Idéal premier
  • Idéal maximal
  • Idéal primaire
  • Idéal primitif (en)
Chaînes d'idéaux
  • Anneau noethérien
  • Anneau artinien
  • Anneau de Jaffard
  • Anneau cohérent
  • Anneau de Goldie
  • Anneau de Jacobson
  • Anneau de Gorenstein
  • Anneau caténaire
Mesures
  • Dimension de Krull
  • Dimension homologique
  • Longueur d'un module
  • Profondeur d'un module
Modules
  • Catégorie des modules
  • Module de type fini
  • Module simple
  • Module semi-simple
  • Module monogène
  • Module libre
  • Module quotient
  • Facteur direct
  • Dual d'un module
  • Annulateur
  • Produit tensoriel
  • Puissance extérieure
  • Bimodule
  • Module artinien
  • Anneau de Cohen-Macaulay
  • Anneau des entiers
Fonctorialité
  • Anneau d'Hermite
  • Module projectif
  • Module injectif
  • Module plat
  • Module fidèle
  • Anneau régulier
Opérations
  • Morphisme d'anneaux
  • Localisation
  • Somme directe
  • Produit tensoriel
  • Représentation
  • Quotient
  • Extension d'anneau (en)
  • Radical d'un idéal
  • Nilradical
  • Radical de Jacobson
  • Going up et going down
  • icône décorative Portail de l’algèbre
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Facteur_direct_d%27un_module&oldid=200305678 ».
Catégorie :
  • Module
Catégories cachées :
  • Wikipédia:ébauche algèbre
  • Article manquant de références depuis janvier 2023
  • Article manquant de références/Liste complète
  • Article contenant un appel à traduction en anglais
  • Portail:Algèbre/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Mathématiques/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id