Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Groupe trivial — Wikipédia
Groupe trivial — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, un groupe trivial est un groupe constitué du seul élément e. Tous les groupes triviaux sont isomorphes, c'est pourquoi on dit souvent le groupe trivial. L'opération de groupe est e + e = e. L'élément e est le neutre, et le groupe est abélien et même cyclique.

On ne doit pas confondre le groupe trivial avec l'ensemble vide (qui n'a pas d'élément, donc pas d'élément neutre, si bien qu'il ne peut pas être un groupe).

Le groupe trivial est « le » groupe cyclique d'ordre 1, noté C1. C'est aussi « l' » objet nul (i. e. à la fois objet initial et objet final) de la catégorie des groupes, parfois noté 0.

Chez beaucoup d'auteurs[1],[2], le sous-groupe trivial d'un groupe G désigne le sous-groupe réduit à l'élément neutre de G, mais chez certains autres, « les sous-groupes triviaux d'un groupe G sont G et le sous-groupe de G réduit à l'élément neutre »[3].

Notes et références

[modifier | modifier le code]
  1. ↑ Marie Paule Malliavin, Les groupes finis et leurs représentations complexes, vol. 1, Masson, 1981, p. 22.
  2. ↑ RMS, vol. 114, Numéros 1 à 3, e.net 2004, II.A.5 p. 62.
  3. ↑ Aviva Szpirglas, Algèbre L3 : Cours complet avec 400 tests et exercices corrigés [détail de l’édition], Exemples 6.4.

Articles connexes

[modifier | modifier le code]
  • Groupe simple
  • Liste des petits groupes
  • icône décorative Portail de l’algèbre
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Groupe_trivial&oldid=178414717 ».
Catégories :
  • Groupe fini
  • Groupe remarquable
Catégories cachées :
  • Portail:Algèbre/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Mathématiques/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id