Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Module de cisaillement — Wikipédia
Module de cisaillement — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.

Cet article ne cite pas suffisamment ses sources (août 2019).

Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ».

En pratique : Quelles sources sont attendues ? Comment ajouter mes sources ?
Schéma de principe du cisaillement.

En résistance des matériaux, le module de cisaillement, module de glissement, module de rigidité, module de Coulomb ou second coefficient de Lamé, est une grandeur physique intrinsèque à chaque matériau et qui intervient dans la caractérisation des déformations causées par des efforts de cisaillement.

La définition du module de rigidité G {\displaystyle G} {\displaystyle G}, parfois aussi noté μ, est G = df τ x y γ x y = F ℓ A Δ x , {\displaystyle G{\overset {\text{df}}{=}}{\dfrac {\tau _{xy}}{\gamma _{xy}}}={\frac {F\ell }{A\Delta x}},} {\displaystyle G{\overset {\text{df}}{=}}{\dfrac {\tau _{xy}}{\gamma _{xy}}}={\frac {F\ell }{A\Delta x}},}où (voir l'image ci-contre) τ x y = F A {\textstyle \tau _{xy}={\frac {F}{A}}} {\textstyle \tau _{xy}={\frac {F}{A}}} est la contrainte de cisaillement, F {\displaystyle F} {\displaystyle F} la force, A {\displaystyle A} {\displaystyle A} l'aire sur laquelle la force agit, γ x y = Δ x ℓ = tan ⁡ ( θ ) {\textstyle \gamma _{xy}={\frac {\Delta x}{\ell }}=\tan(\theta )} {\textstyle \gamma _{xy}={\frac {\Delta x}{\ell }}=\tan(\theta )} le déplacement latéral relatif et θ {\displaystyle \theta } {\displaystyle \theta } l'écart à l'angle droit, Δ x {\textstyle \Delta x} {\textstyle \Delta x} le déplacement latéral et enfin ℓ {\textstyle \ell } {\textstyle \ell } l'épaisseur.

Le module de rigidité G {\displaystyle G} {\displaystyle G}, qui a la dimension d'une contrainte ou d'une pression, est généralement exprimé en mégapascals (ou newtons par millimètre carré) ou en gigapascals (ou joules par millimètre cube). À titre d'exemple, pour l'acier, G ≃ {\displaystyle G\simeq } {\displaystyle G\simeq } 81 000 MPa = 81 GPa.

Dans le cas de matériaux isotropes, il est relié au module d'élasticité E {\displaystyle E} {\displaystyle E} et au coefficient de Poisson ν {\displaystyle \nu } {\displaystyle \nu } par l'expression : G = E 2 ( 1 + ν ) . {\displaystyle G={\dfrac {E}{2(1+\nu )}}.} {\displaystyle G={\dfrac {E}{2(1+\nu )}}.}

Voir aussi

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]
  • Module d'élasticité
  • Module d'inertie
  • Coefficient de Poisson
  • Analyse mécanique dynamique
  • Contrainte de cisaillement
  • Cisaillage

Liens externes

[modifier | modifier le code]

  • Notices dans des dictionnaires ou encyclopédies généralistesVoir et modifier les données sur Wikidata :
    • Britannica
    • Den Store Danske Encyklopædi
    • Internetowa encyklopedia PWN
  • Notices d'autoritéVoir et modifier les données sur Wikidata :
    • GND
v · m
Modules d'élasticité pour des matériaux homogènes et isotropes
  • Module d'Young (E)
  • Module de cisaillement (G)
  • Module d'élasticité isostatique (K)
  • Premier coefficient de Lamé (λ)
  • Coefficient de Poisson (ν)
  • Module d'onde de compression (M, P-wave modulus)
Formules de conversion
Les propriétés élastiques des matériaux homogènes, isotropes et linéaires sont déterminées de manière unique par deux modules quelconques parmi ceux-ci. Ainsi, on peut calculer chacun à partir de deux d'entre eux en utilisant ces formules.

formules en 3D

( λ , G ) {\displaystyle (\lambda ,G)} {\displaystyle (\lambda ,G)}

( E , G ) {\displaystyle (E,G)} {\displaystyle (E,G)}

( K , λ ) {\displaystyle (K,\lambda )} {\displaystyle (K,\lambda )}

( K , G ) {\displaystyle (K,G)} {\displaystyle (K,G)}

( λ , ν ) {\displaystyle (\lambda ,\nu )} {\displaystyle (\lambda ,\nu )}

( G , ν ) {\displaystyle (G,\nu )} {\displaystyle (G,\nu )}

( E , ν ) {\displaystyle (E,\nu )} {\displaystyle (E,\nu )}

( K , ν ) {\displaystyle (K,\nu )} {\displaystyle (K,\nu )}

( K , E ) {\displaystyle (K,E)} {\displaystyle (K,E)}

( M , G ) {\displaystyle (M,G)} {\displaystyle (M,G)}

K [ P a ] = {\displaystyle K\,[\mathrm {Pa} ]=} {\displaystyle K\,[\mathrm {Pa} ]=}

λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} {\displaystyle \lambda +{\tfrac {2G}{3}}}

E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} {\displaystyle {\tfrac {EG}{3(3G-E)}}}

 

 

λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}

2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}

E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} {\displaystyle {\tfrac {E}{3(1-2\nu )}}}

 

 

M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} {\displaystyle M-{\tfrac {4G}{3}}}

E [ P a ] = {\displaystyle E\,[\mathrm {Pa} ]=} {\displaystyle E\,[\mathrm {Pa} ]=}

G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}

 

9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}

9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} {\displaystyle {\tfrac {9KG}{3K+G}}}

λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}

2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} {\displaystyle 2G(1+\nu )\,}

 

3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,} {\displaystyle 3K(1-2\nu )\,}

 

G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} {\displaystyle {\tfrac {G(3M-4G)}{M-G}}}

λ [ P a ] = {\displaystyle \lambda \,[\mathrm {Pa} ]=} {\displaystyle \lambda \,[\mathrm {Pa} ]=}

 

G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} {\displaystyle {\tfrac {G(E-2G)}{3G-E}}}

 

K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} {\displaystyle K-{\tfrac {2G}{3}}}

 

2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} {\displaystyle {\tfrac {2G\nu }{1-2\nu }}}

E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}

3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} {\displaystyle {\tfrac {3K\nu }{1+\nu }}}

3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}

M − 2 G {\displaystyle M-2G} {\displaystyle M-2G}

G [ P a ] = {\displaystyle G\,[\mathrm {Pa} ]=} {\displaystyle G\,[\mathrm {Pa} ]=}

 

 

3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} {\displaystyle {\tfrac {3(K-\lambda )}{2}}}

 

λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}

 

E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} {\displaystyle {\tfrac {E}{2(1+\nu )}}}

3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}

3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}} {\displaystyle {\tfrac {3KE}{9K-E}}}

 

ν [ 1 ] = {\displaystyle \nu \,[1]=} {\displaystyle \nu \,[1]=}

λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}

E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1} {\displaystyle {\tfrac {E}{2G}}-1}

λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} {\displaystyle {\tfrac {\lambda }{3K-\lambda }}}

3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}

 

 

 

 

3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} {\displaystyle {\tfrac {3K-E}{6K}}}

M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}} {\displaystyle {\tfrac {M-2G}{2M-2G}}}

M [ P a ] = {\displaystyle M\,[\mathrm {Pa} ]=} {\displaystyle M\,[\mathrm {Pa} ]=}

λ + 2 G {\displaystyle \lambda +2G} {\displaystyle \lambda +2G}

G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}} {\displaystyle {\tfrac {G(4G-E)}{3G-E}}}

3 K − 2 λ {\displaystyle 3K-2\lambda \,} {\displaystyle 3K-2\lambda \,}

K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}} {\displaystyle K+{\tfrac {4G}{3}}}

λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}

2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}} {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}

E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}} {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}

3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}} {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}

3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}} {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}

 

formules en 2D

( λ 2 D , G 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },G_{\mathrm {2D} })} {\displaystyle (\lambda _{\mathrm {2D} },G_{\mathrm {2D} })}

( E 2 D , G 2 D ) {\displaystyle (E_{\mathrm {2D} },G_{\mathrm {2D} })} {\displaystyle (E_{\mathrm {2D} },G_{\mathrm {2D} })}

( K 2 D , λ 2 D ) {\displaystyle (K_{\mathrm {2D} },\lambda _{\mathrm {2D} })} {\displaystyle (K_{\mathrm {2D} },\lambda _{\mathrm {2D} })}

( K 2 D , G 2 D ) {\displaystyle (K_{\mathrm {2D} },G_{\mathrm {2D} })} {\displaystyle (K_{\mathrm {2D} },G_{\mathrm {2D} })}

( λ 2 D , ν 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\nu _{\mathrm {2D} })} {\displaystyle (\lambda _{\mathrm {2D} },\nu _{\mathrm {2D} })}

( G 2 D , ν 2 D ) {\displaystyle (G_{\mathrm {2D} },\nu _{\mathrm {2D} })} {\displaystyle (G_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( E 2 D , ν 2 D ) {\displaystyle (E_{\mathrm {2D} },\nu _{\mathrm {2D} })} {\displaystyle (E_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( K 2 D , ν 2 D ) {\displaystyle (K_{\mathrm {2D} },\nu _{\mathrm {2D} })} {\displaystyle (K_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( K 2 D , E 2 D ) {\displaystyle (K_{\mathrm {2D} },E_{\mathrm {2D} })} {\displaystyle (K_{\mathrm {2D} },E_{\mathrm {2D} })}

( M 2 D , G 2 D ) {\displaystyle (M_{\mathrm {2D} },G_{\mathrm {2D} })} {\displaystyle (M_{\mathrm {2D} },G_{\mathrm {2D} })}

K 2 D [ N / m ] = {\displaystyle K_{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle K_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

λ 2 D + G 2 D {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }} {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}

G 2 D E 2 D 4 G 2 D − E 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }E_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {G_{\mathrm {2D} }E_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

 

λ 2 D ( 1 + ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}

G 2 D ( 1 + ν 2 D ) 1 − ν 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}

E 2 D 2 ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}} {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}

 

 

M 2 D − G 2 D {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }} {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}

E 2 D [ N / m ] = {\displaystyle E_{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle E_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

4 G 2 D ( λ 2 D + G 2 D ) λ 2 D + 2 G 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}

 

4 K 2 D ( K 2 D − λ 2 D ) 2 K 2 D − λ 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}

4 K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}

λ 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}

2 G 2 D ( 1 + ν 2 D ) {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,} {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}

 

2 K 2 D ( 1 − ν 2 D ) {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })} {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}

 

4 G 2 D ( M 2 D − G 2 D ) M 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}

λ 2 D [ N / m ] = {\displaystyle \lambda _{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle \lambda _{\mathrm {2D} }\,[\mathrm {N/m} ]=}

 

2 G 2 D ( E 2 D − 2 G 2 D ) 4 G 2 D − E 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

K 2 D − G 2 D {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }} {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}

 

2 G 2 D ν 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}

E 2 D ν 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}} {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}

2 K 2 D ν 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}

2 K 2 D ( 2 K 2 D − E 2 D ) 4 K 2 D − E 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

M 2 D − 2 G 2 D {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }} {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }}

G 2 D [ N / m ] = {\displaystyle G_{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle G_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

 

 

K 2 D − λ 2 D {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }} {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}

 

λ 2 D ( 1 − ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}

 

E 2 D 2 ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}} {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}

K 2 D ( 1 − ν 2 D ) 1 + ν 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}

K 2 D E 2 D 4 K 2 D − E 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

ν 2 D [ 1 ] = {\displaystyle \nu _{\mathrm {2D} }\,[1]=} {\displaystyle \nu _{\mathrm {2D} }\,[1]=}

λ 2 D λ 2 D + 2 G 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}

E 2 D 2 G 2 D − 1 {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1} {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}

λ 2 D 2 K 2 D − λ 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}

K 2 D − G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}

 

 

 

 

2 K 2 D − E 2 D 2 K 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}} {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}

M 2 D − 2 G 2 D M 2 D {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}} {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}

M 2 D [ N / m ] = {\displaystyle M_{\mathrm {2D} }\,[\mathrm {N/m} ]=} {\displaystyle M_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

λ 2 D + 2 G 2 D {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }} {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}

4 G 2 D 2 4 G 2 D − E 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

2 K 2 D − λ 2 D {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }} {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}

K 2 D + G 2 D {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }} {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}

λ 2 D ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}

2 G 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}

E 2 D ( 1 − ν 2 D ) ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1-\nu _{\mathrm {2D} })(1+\nu _{\mathrm {2D} })}}} {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1-\nu _{\mathrm {2D} })(1+\nu _{\mathrm {2D} })}}}

2 K 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}} {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}

4 K 2 D 2 4 K 2 D − E 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

  • icône décorative Portail de la physique
  • icône décorative Portail des sciences des matériaux
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Module_de_cisaillement&oldid=225428245 ».
Catégorie :
  • Élasticité
Catégories cachées :
  • Article manquant de références depuis août 2019
  • Article manquant de références/Liste complète
  • Page utilisant un modèle Bases inactif
  • Page utilisant P1417
  • Page utilisant P8313
  • Page utilisant P7305
  • Page pointant vers des bases externes
  • Page pointant vers des dictionnaires ou encyclopédies généralistes
  • Article de Wikipédia avec notice d'autorité
  • Portail:Physique/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Matériaux/Articles liés
  • Portail:Technologies/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id