Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Optimisation convexe — Wikipédia
Optimisation convexe — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Optimisation convexe dans un espace en deux dimensions dans un espace contraint E {\displaystyle E} {\displaystyle E}

L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive).

La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions. Cette généralité est motivée par le fait que certaines méthodes de construction de problèmes d'optimisation convexe conduisent à des problèmes non différentiables (fonction marginale, dualisation de contraintes, etc). Si cette généralité est un atout, permettant de prendre en compte davantage de problèmes, l'abord de la théorie est également plus difficile.

L'optimisation convexe repose sur l'analyse convexe.

Contexte et introduction

[modifier | modifier le code]

L'optimisation convexe est un type d'optimisation mathématique, c'est-à-dire une discipline qui étudie des problèmes du type : optimiser une fonction donnée dans un espace donné. Elle généralise l'optimisation linéaire et l'optimisation semi-définie positive[1], mais aussi l'optimisation conique et l'optimisation copositive.

Définitions du problème

[modifier | modifier le code]

Formulation générale

[modifier | modifier le code]

Soit E {\displaystyle \mathbb {E} } {\displaystyle \mathbb {E} } un espace vectoriel. Un problème d'optimisation convexe[1] consiste à minimiser une fonction convexe f : E → R ¯ := R ∪ { − ∞ , + ∞ } {\displaystyle f:\mathbb {E} \to {\bar {\mathbb {R} }}:=\mathbb {R} \cup \{-\infty ,+\infty \}} {\displaystyle f:\mathbb {E} \to {\bar {\mathbb {R} }}:=\mathbb {R} \cup \{-\infty ,+\infty \}} sur E {\displaystyle \mathbb {E} } {\displaystyle \mathbb {E} }, ce que l'on écrit d'une des manières suivantes :

inf x ∈ E f ( x ) ou inf { f ( x ) : x ∈ E } ou inf f ( E ) ou { inf f ( x ) x ∈ E . {\displaystyle \inf _{x\in \mathbb {E} }\,f(x)\quad {\mbox{ou}}\quad \inf \,\{f(x):x\in \mathbb {E} \}\quad {\mbox{ou}}\quad \inf \,f(\mathbb {E} )\quad {\mbox{ou}}\quad \left\{{\begin{array}{l}\inf \,f(x)\\x\in \mathbb {E} .\end{array}}\right.} {\displaystyle \inf _{x\in \mathbb {E} }\,f(x)\quad {\mbox{ou}}\quad \inf \,\{f(x):x\in \mathbb {E} \}\quad {\mbox{ou}}\quad \inf \,f(\mathbb {E} )\quad {\mbox{ou}}\quad \left\{{\begin{array}{l}\inf \,f(x)\\x\in \mathbb {E} .\end{array}}\right.}

Si on note

A ≡ dom ⁡ f := { x ∈ E : f ( x ) < + ∞ } {\displaystyle {\mathcal {A}}\equiv \operatorname {dom} f:=\{x\in \mathbb {E} :f(x)<+\infty \}} {\displaystyle {\mathcal {A}}\equiv \operatorname {dom} f:=\{x\in \mathbb {E} :f(x)<+\infty \}}

le domaine (effectif) de f {\displaystyle f} {\displaystyle f}, le problème est identique à celui de minimiser f {\displaystyle f} {\displaystyle f} sur A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} :

inf x ∈ A f ( x ) . {\displaystyle \inf _{x\in {\mathcal {A}}}\,f(x).} {\displaystyle \inf _{x\in {\mathcal {A}}}\,f(x).}

Si A = ∅ {\displaystyle {\mathcal {A}}=\varnothing } {\displaystyle {\mathcal {A}}=\varnothing }, c'est-à-dire si f ≡ + ∞ {\displaystyle f\equiv +\infty } {\displaystyle f\equiv +\infty }, cette expression est encore valable puisque, par convention, inf f ( ∅ ) = + ∞ {\displaystyle \inf f(\varnothing )=+\infty } {\displaystyle \inf f(\varnothing )=+\infty }. L'intérêt d'avoir une fonction f {\displaystyle f} {\displaystyle f} pouvant prendre la valeur + ∞ {\displaystyle +\infty } {\displaystyle +\infty } est donc d'introduire des contraintes dans le problème de minimisation (on oblige la solution du problème à être dans A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}}).

Solution

[modifier | modifier le code]

Une solution (globale) du problème inf { f ( x ) : x ∈ E } {\displaystyle \inf\{f(x):x\in \mathbb {E} \}} {\displaystyle \inf\{f(x):x\in \mathbb {E} \}} est un point x ¯ ∈ E {\displaystyle {\bar {x}}\in \mathbb {E} } {\displaystyle {\bar {x}}\in \mathbb {E} } tel que

∀ x ∈ E : f ( x ¯ ) ≤ f ( x ) . {\displaystyle \forall \,x\in \mathbb {E} :\quad f({\bar {x}})\leq f(x).} {\displaystyle \forall \,x\in \mathbb {E} :\quad f({\bar {x}})\leq f(x).}

Clairement, si f {\displaystyle f} {\displaystyle f} prend la valeur − ∞ {\displaystyle -\infty } {\displaystyle -\infty }, on a f ( x ¯ ) = − ∞ {\displaystyle f({\bar {x}})=-\infty } {\displaystyle f({\bar {x}})=-\infty } ; et si f {\displaystyle f} {\displaystyle f} n'est pas identiquement égale à + ∞ {\displaystyle +\infty } {\displaystyle +\infty }, on a f ( x ¯ ) < + ∞ {\displaystyle f({\bar {x}})<+\infty } {\displaystyle f({\bar {x}})<+\infty }.

Si E {\displaystyle \mathbb {E} } {\displaystyle \mathbb {E} } est un espace vectoriel topologique, x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}} est une solution locale du problème inf { f ( x ) : x ∈ E } {\displaystyle \inf\{f(x):x\in \mathbb {E} \}} {\displaystyle \inf\{f(x):x\in \mathbb {E} \}} si

∃ V   voisinage de   x ¯ , ∀ x ∈ V : f ( x ¯ ) ≤ f ( x ) . {\displaystyle \exists \,V~{\mbox{voisinage de}}~{\bar {x}},\quad \forall \,x\in V:\quad f({\bar {x}})\leq f(x).} {\displaystyle \exists \,V~{\mbox{voisinage de}}~{\bar {x}},\quad \forall \,x\in V:\quad f({\bar {x}})\leq f(x).}

En réalité une solution locale est une solution globale au sens précédent.

Solutions d'un problème d'optimisation convexe — 

  1. L'ensemble des solutions d'un problème d'optimisation convexe est convexe.
  2. Si f {\displaystyle f} {\displaystyle f} est strictement convexe, le problème d'optimisation convexe a au plus une solution.
  3. Si E {\displaystyle \mathbb {E} } {\displaystyle \mathbb {E} } est un espace vectoriel topologique et si x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}} est une solution locale d'un problème d'optimisation convexe, alors x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}} est une solution globale du problème.

Contraintes fonctionnelles

[modifier | modifier le code]

Au lieu de donner la valeur infinie au critère en dehors de l'ensemble admissible, on peut spécifier explicitement les contraintes à réaliser. Le problème s'écrit par exemple comme suit

{ inf f ( x ) x ∈ C A x = b c ( x ) ⩽ 0 , {\displaystyle \left\{{\begin{array}{l}\inf \,f(x)\\x\in C\\Ax=b\\c(x)\leqslant 0,\end{array}}\right.} {\displaystyle \left\{{\begin{array}{l}\inf \,f(x)\\x\in C\\Ax=b\\c(x)\leqslant 0,\end{array}}\right.}

dans lequel on minimise une fonction f : x ∈ E ↦ f ( x ) ∈ R {\displaystyle f:x\in \mathbb {E} \mapsto f(x)\in \mathbb {R} } {\displaystyle f:x\in \mathbb {E} \mapsto f(x)\in \mathbb {R} } à valeurs finies et l'inconnue x ∈ E {\displaystyle x\in \mathbb {E} } {\displaystyle x\in \mathbb {E} } doit

  • appartenir à un ensemble convexe C {\displaystyle C} {\displaystyle C} de E {\displaystyle \mathbb {E} } {\displaystyle \mathbb {E} },
  • vérifier une contrainte affine A x = b {\displaystyle Ax=b} {\displaystyle Ax=b} ( A : E → F {\displaystyle A:\mathbb {E} \to \mathbb {F} } {\displaystyle A:\mathbb {E} \to \mathbb {F} } est une application linéaire entre E {\displaystyle \mathbb {E} } {\displaystyle \mathbb {E} } et un autre espace vectoriel F {\displaystyle \mathbb {F} } {\displaystyle \mathbb {F} } et b ∈ F {\displaystyle b\in \mathbb {F} } {\displaystyle b\in \mathbb {F} }) et
  • vérifier un nombre fini de contraintes fonctionnelles convexes données par une fonction c : E → R m {\displaystyle c:\mathbb {E} \to \mathbb {R} ^{m}} {\displaystyle c:\mathbb {E} \to \mathbb {R} ^{m}} dont les m {\displaystyle m} {\displaystyle m} composantes sont convexes et l'inégalité vectorielle c ( x ) ⩽ 0 {\displaystyle c(x)\leqslant 0} {\displaystyle c(x)\leqslant 0} doit se comprendre composante par composante (elle est équivalente aux m {\displaystyle m} {\displaystyle m} contraintes d'inégalité c i ( x ) ⩽ 0 {\displaystyle c_{i}(x)\leqslant 0} {\displaystyle c_{i}(x)\leqslant 0} pour i ∈ [ [ 1 , m ] ] {\displaystyle i\in [\![1,m]\!]} {\displaystyle i\in [\![1,m]\!]}).

L'ensemble admissible de ce problème est convexe et s'écrit

X := { x ∈ E : x ∈ C ,   A x = b ,   c ( x ) ⩽ 0 } . {\displaystyle X:=\{x\in \mathbb {E} :x\in C,~Ax=b,~c(x)\leqslant 0\}.} {\displaystyle X:=\{x\in \mathbb {E} :x\in C,~Ax=b,~c(x)\leqslant 0\}.}

Le problème est bien convexe puisqu'il s'agit de minimiser sur E {\displaystyle \mathbb {E} } {\displaystyle \mathbb {E} } la fonction f ~ : x ∈ E ↦ f ~ ( x ) ∈ R ¯ {\displaystyle {\tilde {f}}:x\in \mathbb {E} \mapsto {\tilde {f}}(x)\in {\bar {\mathbb {R} }}} {\displaystyle {\tilde {f}}:x\in \mathbb {E} \mapsto {\tilde {f}}(x)\in {\bar {\mathbb {R} }}} définie par

f ~ ( x ) = { f ( x ) si   x ∈ X + ∞ sinon , {\displaystyle {\tilde {f}}(x)=\left\{{\begin{array}{ll}f(x)&{\mbox{si}}~x\in X\\+\infty &{\mbox{sinon}},\end{array}}\right.} {\displaystyle {\tilde {f}}(x)=\left\{{\begin{array}{ll}f(x)&{\mbox{si}}~x\in X\\+\infty &{\mbox{sinon}},\end{array}}\right.}

qui est une fonction convexe.

Conditions d'optimalité

[modifier | modifier le code]

Condition générale

[modifier | modifier le code]

La condition d'optimalité correspondant à la formulation générale du problème est la suivante. On note ∂ f ( x ) {\displaystyle \partial f(x)} {\displaystyle \partial f(x)} le sous-différentiel de f {\displaystyle f} {\displaystyle f} en un point x {\displaystyle x} {\displaystyle x} tel que f ( x ) ∈ R {\displaystyle f(x)\in \mathbb {R} } {\displaystyle f(x)\in \mathbb {R} }.

Condition d'optimalité générale — Si x ¯ ∈ E {\displaystyle {\bar {x}}\in \mathbb {E} } {\displaystyle {\bar {x}}\in \mathbb {E} } est tel que f ( x ¯ ) ∈ R {\displaystyle f({\bar {x}})\in \mathbb {R} } {\displaystyle f({\bar {x}})\in \mathbb {R} }, alors x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}} est solution du problème convexe inf { f ( x ) : x ∈ E } {\displaystyle \inf\{f(x):x\in \mathbb {E} \}} {\displaystyle \inf\{f(x):x\in \mathbb {E} \}} si, et seulement si, 0 ∈ ∂ f ( x ¯ ) {\displaystyle 0\in \partial f({\bar {x}})} {\displaystyle 0\in \partial f({\bar {x}})}.

Cas de contraintes fonctionnelles

[modifier | modifier le code]

On s'intéresse ici à des conditions d'optimalité pour le problème exprimé au moyen de contraintes fonctionnelles.

Notes et références

[modifier | modifier le code]
  1. ↑ a et b Stephen Boyd et Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2009 (lire en ligne).
v · m
Optimisation: théorie et algorithmes
Non linéaire
  • Méthode du nombre d'or
  • Recherche linéaire
  • Méthode de Nelder-Mead
  • Critères de Wolfe
  • Méthode de Broyden-Fletcher-Goldfarb-Shanno
  • Algorithme à régions de confiance
  • Pénalisation
  • Algorithme du gradient
  • Algorithme du gradient stochastique
  • Méthode de Newton
  • Algorithme de Gauss-Newton
  • Algorithme de Levenberg-Marquardt
  • Algorithme du lagrangien augmenté
Convexe
  • Optimisation complètement positive
  • Optimisation copositive
  • Optimisation SDP
  • Méthode des plans sécants
  • Algorithme de Frank-Wolfe
  • Méthode de l'ellipsoïde
Linéaire
  • Optimisation conique
  • Algorithme du simplexe
  • Méthodes de points intérieurs
  • Décomposition de Benders
  • Génération de colonnes
Quadratique
  • Optimisation quadratique successive
Combinatoire
  • Algorithme d'approximation
  • Programmation dynamique
  • Algorithme glouton
  • Optimisation linéaire en nombres entiers
Métaheuristique
  • Stratégie d'évolution
    • Algorithme génétique
  • Essaims
  • Forêts aléatoires
  • Boosting
  • icône décorative Portail des mathématiques
  • icône décorative Portail de l'informatique théorique
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Optimisation_convexe&oldid=216295287 ».
Catégorie :
  • Optimisation
Catégories cachées :
  • Portail:Mathématiques/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Informatique théorique/Articles liés
  • Portail:Informatique/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id