Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Pavage pentagonal — Wikipédia
Pavage pentagonal — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Page d’aide sur l’homonymie

Pour les articles homonymes, voir Pavage (homonymie).

Cet article est une ébauche concernant la géométrie.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.
Les quinze pavages pentagonaux isoédriques possibles.

Un pavage pentagonal est, en géométrie, un pavage du plan euclidien par des pentagones.

Un pavage du plan uniquement avec des pentagones réguliers n'est pas possible, car l'angle interne du pentagone (108°) ne divise pas un tour complet (360°). En revanche, on peut considérer le dodécaèdre régulier comme un pavage de la sphère par des pentagones réguliers.

On connait quinze types de pavages pentagonaux, c'est-à-dire employant un même type de tuile pentagonale convexe. Michaël Rao annonce en 2017 que la liste est complète[1], sa preuve est en cours de vérification.

Histoire

[modifier | modifier le code]

Les cinq premiers pavages pentagonaux ont été découverts par le chercheur allemand Karl Reinhardt en 1918[2]. Richard B. Kershner[3] en a ajouté trois en 1968[2], portant le total à huit, et croit pouvoir affirmer qu'il n’en existe pas d'autres[4]. Cette affirmation est reprise dans les articles grand public d'époque[5]. À la suite d'un article de Martin Gardner dans le Scientific American en 1975, Richard E. James, un informaticien, en découvre un neuvième, et Marjorie Rice, mathématicienne amateur découvre quatre nouveaux types en 1976 et 1977, portant le total à treize. En 1985 Rolf Stein, un doctorant allemand[4] en trouve un quatorzième[2].

Le quinzième a été découvert en août 2015 par une équipe de mathématiciens du campus Bothell de l'université de Washington[6] composée de trois mathématiciens : Casey Mann, Jennifer McLoud et David Von Derau[4]. Il s'agit du premier pavage découvert depuis 1985. L'équipe a utilisé un programme sur ordinateur, et découvre ce 15e pavage pentagonal par une recherche exhaustive. Casey Mann a publié un article sur arXiv (5 octobre 2015)[7] pour résumer ces travaux (« pentagones convexes utilisés pour des pavages i-blocs transitifs »). En 2017, Michaël Rao prouve, aidé de l’ordinateur[8], que cette classification est complète[1]. En 2022 cette preuve est toujours en cours de vérification par la communauté mathématique[9].

Les pavages du plan ont fait l'objet de travaux mathématiques à la frontière entre la géométrie euclidienne plane, la théorie des groupes et la topologie.

Variantes de pavage

[modifier | modifier le code]

Certaines de ces quinze tuiles pentagonales peuvent être agencées de plusieurs façons différentes pour remplir le plan, par exemple dans le pavage pentagonal irrégulier de Bernhard Klaassen[10],[11] :

Ou encore le pavage irrégulier intitulé "versa-tile" par M. Hirschhorn, qui n'a pas de symétrie axiale. Les tuiles marquées d'un point sont retournées par rapport aux autres :

Notes et références

[modifier | modifier le code]
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Pentagon tiling » (voir la liste des auteurs).
  1. ↑ a et b Rao 2017.
  2. ↑ a b et c Alex Bellos, « Attack on the pentagon results in discovery of new mathematical tile », The Guardian,‎ 11 août 2015 (lire en ligne).
  3. ↑ Richard Kershner, « On paving the plane », American Mathematical Monthly, vol. 75,‎ 1968, p. 839–844 (ISSN 0002-9890, DOI 10.2307/2314332, MR 0236822, lire en ligne)
  4. ↑ a b et c Étienne Ghys, « L'énigme des pentagones », Le Monde, no 21991,‎ 30 septembre 2015, p. 1 du Cahier science & médecine.
  5. ↑ Jean-Claude Baillif, « Les pavages du plan », Jeux et Stratégie, no 19,‎ février - mars 1983, p. 74-76
  6. ↑ Clémence Lecornué, « La découverte d'une "tuile" historique secoue le monde des mathématiques », sur Huffington Post, 20 août 2015, traduit de l'article correspondant en anglais.
  7. ↑ (en) Casey Mann, Jennifer McLoud-Mann et David Von Derau, « Convex pentagons that admit i-block transitive tilings », sur arxiv.org, 5 octobre 2015 (consulté le 12 octobre 2015).
  8. ↑ (en) Pentagon Tiling Proof Solves Century-Old Math Problem, sur quantamagazine.org
  9. ↑ Yves Coudène, La géométrie élémentaire d'Euclide à aujourd'hui, Calvage & Mounet, coll. « Mathématiques en devenir », 2022, 451 p. (ISBN 978-2-49-323001-0), chap. 10 (« La recherche en géométrie »), p. 400
  10. ↑ Bernhard Klaassen, « Rotationally symmetric tilings with convex pentagons and hexagons », Elemente der Mathematik, vol. 71, no 4,‎ 2016, p. 137–144 (ISSN 0013-6018, DOI 10.4171/em/310, arXiv 1509.06297)
  11. ↑ (en) Bernhard Klaassen, « Rotationally Symmetric Tilings with Convex Pentagons and Hexagons », 2016.

Voir aussi

[modifier | modifier le code]

Bibliographie

[modifier | modifier le code]
  • [Grünbaum et Shephard 1987] (en) Branko Grünbaum et G. C. Shephard, Tilings and Patterns, New York, W. H. Freeman and Company, 1987, 700 p. (ISBN 978-0-7167-1193-3, LCCN 86002007), « Tilings by polygons »
  • [Garnder 1988] (en) Martin Gardner, Time Travel and Other Mathematical Bewilderments, New York, W. H. Freeman and Company, 1988, 5e éd., 295 p., poche (ISBN 978-0-7167-1925-0, LCCN 87011849), « Tiling with Convex Polygons »
  • Jean-Paul Delahaye, « Les pavages pentagonaux : une classification qui s’améliore », Pour la Science, no 432,‎ octobre 2013 (lire en ligne).
  • [Rao 2017] (en) Michaël Rao, « Exhaustive search of convex pentagons which tile the plane », Prépublication,‎ 1er mai 2017 (lire en ligne)
  • Jean-Paul Delahaye, « Paver le plan avec un pentagone convexe », Pour la science, no 482,‎ décembre 2017, p. 80-85 (lire en ligne)
  • Doris Schattschneider, « Tiling the plane with congruent pentagons », Mathematics Magazine, vol. 51, no 1,‎ 1978, p. 29–44 (ISSN 0025-570X, DOI 10.2307/2689644, JSTOR 2689644, MR 0493766)

Articles connexes

[modifier | modifier le code]
  • Pavage du Caire
  • Pavage pentagonal fleurette (en)
  • Pavage pentagonal prismatique (en)

Liens externes

[modifier | modifier le code]
  • (en) Eric W. Weisstein, « Pentagon Tiling », sur MathWorld
  • (en) The 14 Pentagons that Tile the Plane (Mathpuzzle.com)
  • El Jj, « J'ai toujours rêvé d'être pentocarreleur », sur Choux romanesco, vache qui rit et intégrales curvilignes, 13 septembre 2015
  • Étienne Ghys, « L’Énigme des pentagones », sur Images des mathématiques, CNRS, 28 octobre 2011
v · m
Pavage du plan
Pavage périodique
  • Les trois pavages réguliers
    • Pavage triangulaire
    • Pavage carré
    • Pavage hexagonal
  • Les huit pavages semi-réguliers
    • Pavage carré adouci
    • Pavage carré tronqué
    • Pavage hexagonal adouci
    • Pavage hexagonal tronqué
    • Pavage grand rhombitrihexagonal
    • Pavage petit rhombitrihexagonal
    • Pavage triangulaire allongé
    • Pavage trihexagonal
Pavage apériodique
  • Pavage de Penrose
  • Pavage en moulin à vent
  • Reptuile
  • icône décorative Portail de la géométrie
  • icône décorative Portail de l'informatique théorique
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Pavage_pentagonal&oldid=230805757 ».
Catégorie :
  • Pavage
Catégories cachées :
  • Wikipédia:ébauche géométrie
  • Article contenant un appel à traduction en anglais
  • Portail:Géométrie/Articles liés
  • Portail:Mathématiques/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Informatique théorique/Articles liés
  • Portail:Informatique/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id