Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Pulsar — Wikipédia
Pulsar — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Page d’aide sur l’homonymie

Pour les articles homonymes, voir Pulsar (homonymie).

Page d’aide sur l’homonymie

Ne doit pas être confondu avec Blazar, Quasar, Microquasar ou Quasi-étoile.

Vue d'artiste de la mission Fermi de la NASA, d'un pulsar en rotation et de ses faisceaux de radiations.

Un pulsar est une étoile à neutrons tournant très rapidement sur elle-même (période typique de l'ordre de la seconde, voire beaucoup moins pour les pulsars milliseconde) et émettant un fort rayonnement électromagnétique dans la direction de son axe magnétique, allant de l'ordre de la milliseconde à quelques dizaines de secondes.

Terminologie

[modifier | modifier le code]

Attesté dès 1969[1],[2], le substantif[3] masculin[4] pulsar (prononcé en français : /pyl.saʁ/ Écouterⓘ) a été emprunté à l'anglais pulsar[3], un mot-valise[5] de même sens[3], créé à partir de la locution pulsating star[2],[4] (proprement « étoile pulsante »[2]), composée de pulsating (« vibrant ») et star (« étoile »).

Le néologisme a d'abord été attribué à l'astronome et astrophysicien américain Frank Drake qui l'aurait proposé dès avril 1968[6], mais il s'avère qu'il est apparu antérieurement, la première fois dans une interview de l'astronome britannique Antony Hewish parue dans The Daily Telegraph du 5 mars 1968[7]. Mais la véritable découverte des pulsars est à attribuer à Jocelyn Bell en 1967, alors étudiante en doctorat à l'université de Cambridge, où elle assistait l'astronome Anthony Hewish[8],[9].

Ce mot vient de ce que, lors de leur découverte, ces objets ont dans un premier temps été interprétés comme étant des étoiles variables sujettes à des pulsations très rapides. Cette hypothèse s'est rapidement révélée incorrecte, mais le nom est resté[10].

Article détaillé : Désignation des pulsars.

L'abréviation PSR est le sigle de l'anglais pulsating source of radio (emission)[11], proprement « source pulsante d'ondes radio »[12].

Généralités

[modifier | modifier le code]
Image composite visible-rayon X du pulsar du Crabe, né de la supernova historique SN 1054, montrant le gaz environnant la nébuleuse agité par le champ magnétique et le rayonnement du pulsar. Image NASA.

L'axe magnétique d'une étoile à neutrons n'étant en général, à l'instar de la Terre, pas parfaitement aligné avec son axe de rotation, la région d'émission correspond à un instant donné à un faisceau, qui balaie au cours du temps un cône du fait de la rotation de l'astre. Un pulsar se signale pour un observateur distant sous la forme d'un signal périodique, la période correspondant à la période de rotation de l'astre. Ce signal périodique est extrêmement stable, car la rotation de l'astre l'est également, en général, toutefois sa périodicité ralentit presque toujours très légèrement au fil du temps, sur de longues observations.

Vue artistique d'un pulsar tirant de la matière d'une étoile proche.

Les pulsars sont issus de l'explosion d'une étoile massive en fin de vie, phénomène appelé supernova (supernovas à effondrement de cœur, mais l'autre classe de supernovas, les supernovas thermonucléaires ne laissant pas derrière elles de résidu compact, ni d'émission périodique), et toutes les supernovas à effondrement de cœur ne donnent pas naissance à des pulsars, certaines laissant derrière elles un trou noir. Si une étoile à neutrons a une durée de vie virtuellement infinie, le phénomène d'émission caractéristique d'un pulsar ne se manifeste en général fortement que pendant quelques millions d'années, après quoi il devient trop faible pour être détectable avec nos technologies actuelles.

Les pulsars ont été découverts de façon quelque peu fortuite, en 1967, par Jocelyn Bell (maintenant Jocelyn Bell-Burnell) et son directeur de thèse Antony Hewish[13],[14]. Dans le laboratoire Cavendish de l'université de Cambridge, ils étudiaient des phénomènes de scintillation réfractive dans le domaine des ondes radio et avaient de ce fait besoin d'un appareil mesurant des variations d'un signal radio sur des courtes durées (une fraction de seconde). L'instrument a permis de détecter la variation périodique d'objets qui, considérés, un temps, pour plaisanter, comme des sources de signaux de communication émanant d'une intelligence extraterrestre[15], se sont avérés être des pulsars, le premier d'entre eux portant le nom de PSR B1919+21 (ou CP 1919 à l'époque). Sept ans plus tard, le prix Nobel de physique 1974, le premier prix Nobel récompensant des recherches en astronomie[16], fut attribué à Hewish et à son collaborateur Martin Ryle, pour leurs travaux pionniers dans le domaine de la radioastrophysique[17]. Bien que la Fondation Nobel ait souligné le rôle décisif de Hewish dans la découverte des pulsars, elle n'a pas reconnu Jocelyn Bell comme codécouvreuse du nouvel objet astronomique[16]. Une partie de la communauté des astronomes estimait que Bell n'avait fait que rendre compte, dans son travail de thèse, d'un phénomène qu'elle n'avait pas compris[16]. D'autres scientifiques, dont Fred Hoyle[18], ont manifesté leur indignation devant ce qu'ils considéraient comme une injustice[19],[20].

Le pulsar des Voiles (ou pulsar de Vela) PSR B0833-45, et sa nébuleuse de vent de pulsar, vu par le télescope spatial Chandra de la NASA.

La découverte des pulsars a permis le développement important de très nombreuses disciplines de l'astrophysique, depuis les tests de la relativité générale et de la physique de la matière condensée jusqu'à l'étude de la structure de la Voie lactée, en passant bien sûr par les supernovas. L'étude d'un pulsar binaire, le PSR B1913+16, a pour la première fois permis de mettre en évidence la réalité du rayonnement gravitationnel prédit par la relativité générale, et a également été récompensée du prix Nobel de physique (Russell Alan Hulse et Joseph Hooton Taylor, en 1993).

Rayon gamma du pulsar des Voiles (ou pulsar de Vela) PSR B0833-45, vu par le télescope spatial Fermi Gamma-ray Space Telescope de la NASA.

Du fait que l'émission d'un pulsar est physiquement cantonnée dans les limites d'une surface conique, un grand nombre de pulsars sont inobservables depuis la Terre, car celle-ci ne se trouve pas dans le cône balayé par leurs faisceaux d'émission. Néanmoins, plus de 2 000 pulsars étaient connus en 2017), la quasi-totalité d'entre eux étant situés dans la Voie lactée et certains de ses amas globulaires, et d'autres, très peu nombreux, étant situés dans les deux Nuages de Magellan. Même un pulsar aussi énergétique que le pulsar le plus énergétique connu (le pulsar du Crabe, aussi appelé PSR B0531+21) serait a priori indétectable s'il était observé depuis la galaxie d'Andromède (M31), aussi la Voie lactée et les Nuages de Magellan sont-elles les seules galaxies où il semble envisageable d'étudier ces objets avec les technologies actuelles.

Types de pulsar

[modifier | modifier le code]

Il existe une grande variété de types de pulsar (pulsars radio, pulsars X, pulsars X anormaux, magnétars, pulsars milliseconde), dont les propriétés dépendent essentiellement de leur âge et de leur environnement :

Vue d'artiste de l'ESO, du magnétar CXOU J164710.2−455216.
  • Les pulsars radio représentent le gros de la population observée des pulsars. Il s'agit d'objets détectés dans le domaine des ondes radio par leur émission pulsée. Leur détection fait l'objet de techniques particulières, le caractère pulsé de l'émission étant relativement difficile à mettre en évidence, sauf propriétés spécifiques de certains de ces pulsars (pulses géants notamment). De façon paradoxale, le processus physique précis qui explique l'intense émission radio de ces objets n'est pas bien connu… ce qui n'empêche en rien d'étudier ces objets par son intermédiaire.
  • Les pulsars X émettent dans le domaine des rayons X, caractéristique qui regroupe plusieurs phénomènes distincts. Cette émission en X n'est en général pas due à l'émission de leur surface, pourtant très chaude (plusieurs millions de kelvins, voire beaucoup plus), mais est produite à l'extérieur de celle-ci par des processus énergétiques résultant de la rotation rapide de l'étoile à neutrons. Une autre possibilité est qu'elle est due au dégagement d'énergie très intense causé par de la matière s'écrasant sur leur surface et échauffée lors de sa chute sur celle-ci. De tels pulsars sont situés au sein d'un système binaire dans lequel ils orbitent avec un compagnon qui est une étoile ordinaire. Si l'émission X de ce type d'objet est dans ce cas très facile à observer (l'énergie ainsi rayonnée est considérable, de l'ordre de 1031 watts, soit plusieurs dizaines de milliers de luminosités solaires), son caractère pulsé est en revanche bien plus difficile à mettre en évidence, au point que diverses sources de ce type (appelées pour des raisons évidentes binaires X) ne sont pas identifiables en tant que pulsars X[21].
  • Les pulsars gamma sont comme leur nom l'indique des pulsars émettant dans le domaine des rayons gamma. Quand ces objets ne font pas partie d'un système binaire, leur émission gamma est rare (ou en tout cas difficilement détectable) : seuls 7 pulsars gamma sont connus début 2008, avant le lancement du satellite Fermi (en 2013 plus d'une centaine). Si l'on excepte les pulsars présents dans les systèmes binaires, la quasi-totalité des pulsars X et pulsars gamma sont aussi des pulsars radio. La seule (notable) exception à cette règle est PSR J0633+1746, plus connu sous le nom de Geminga, qui de façon paradoxale est une des sources gamma les plus puissantes du ciel, mais qui demeure à ce jour totalement indétectable en radio.
  • Les pulsars X anormaux sont comme leur nom l'indique des pulsars X dont l'émission est « anormale », en l'occurrence, supérieure à l'émission maximale que ces objets devraient a priori avoir. Ils sont le signe qu'un autre processus physique, mal identifié à ce jour, leur confère une énergie importante.
  • Les magnétars sont des pulsars dont le champ magnétique est extrêmement élevé (jusqu'à 1011 teslas). De tels objets sont vraisemblablement très jeunes. Il n'est pas bien établi si ces objets sont intrinsèquement rares ou s'ils représentent un état transitoire bref mais normal de la vie d'un pulsar.
  • Les pulsars milliseconde sont des pulsars très âgés, dotés d'un champ magnétique très faible (pour un pulsar, soit quand même de l'ordre de 104 teslas) mais d'une vitesse de rotation très élevée. Ces pulsars sont souvent en orbite autour d'un compagnon, en général étoile ou naine blanche. La présence de ce compagnon semble jouer un rôle crucial dans la formation de ces objets.
L'astronome britannique Antony Hewish, en 1976, prix Nobel de physique 1974 pour son rôle décisif dans la découverte des pulsars.

Historique de la découverte

[modifier | modifier le code]
L'astrophysicienne britannique Jocelyn Bell, étudiante en 1967.

Les pulsars ont été découverts en 1967 par Jocelyn Bell (alors étudiante âgée de 24 ans) et son directeur de thèse Antony Hewish, à l'université de Cambridge, alors qu'ils étudiaient la scintillation des quasars avec leur radiotélescope Interplanetary Scintillation Array (en) de l'Observatoire de radioastronomie Mullard près de Cambridge. Ils trouvèrent un signal très régulier, constitué de courtes impulsions de rayonnement se répétant de façon très régulière (la période de 1,337 301 192 seconde étant ultérieurement mesurée avec une très haute précision). L'aspect très régulier du signal plaidait pour une origine artificielle, mais une origine terrestre était exclue, car le temps qu'il prenait pour réapparaitre était un jour sidéral et pas un jour solaire, indiquant une position fixe sur la sphère céleste, chose impossible pour un satellite artificiel.

Ce nouvel objet fut baptisé CP 1919 pour « Cambridge Pulsar à 19 h 19 d'ascension droite » et est nommé aujourd'hui PSR B1919+21 pour « Pulsar à 19 h 19 en ascension droite et +21° de déclinaison ». Jean-Pierre Luminet indique que « lors de la découverte de ces objets extraordinaires, en 1967, certains astronomes ont d’abord cru qu’il s’agissait de signaux artificiels émis par des intelligences extra-terrestres, car la régularité de la pulsation paraissait surnaturelle » : le premier pulsar a ainsi été baptisé « LGM-1 » — et ainsi de suite pour les suivants : LGM-2, etc. — pour Little Green Men-1 (litt. « petits hommes verts-1 »)[22]. Après maintes spéculations, il fut admis que le seul objet naturel qui pourrait être responsable de ce signal était une étoile à neutrons en rotation rapide. Ces objets n'avaient pas encore à l'époque été observés, mais leur existence comme produit de l'explosion d'une étoile massive en fin de vie ne faisait guère de doute. La découverte du pulsar PSR B0531+21 au sein de la nébuleuse du Crabe (M1), résultat de la supernova historique SN 1054 abondamment décrite par les astronomes d'Extrême-Orient (Chine, Japon) acheva de parfaire l'identification entre pulsars et étoiles à neutrons.

Graphique du radiotélescope Interplanetary Scintillation Array (en), sur lequel Jocelyn Bell a reconnu pour la première fois la présence d’un pulsar CP 1919 ou LGM-1 (Little Green Men-1, Petits hommes verts-1) plus tard désigné PSR B1919+21, exposé à la bibliothèque de l'université de Cambridge.

La population de pulsars s'enrichit peu à peu de nouveaux objets, dont certains avaient des propriétés atypiques. Ainsi, le premier pulsar binaire, c'est-à-dire faisant partie d'un système binaire fut découvert en 1974. Il possédait la propriété remarquable de posséder comme compagnon une autre étoile à neutrons, formant avec lui un système binaire en orbite extrêmement serrée, au point que la gravitation universelle ne permet pas d'expliquer les détails de l'orbite du pulsar, révélée par les modulations des temps d'arrivée de l'émission pulsée de ces objets. La précision élevée des mesures a permis aux astronomes de calculer la perte d'énergie orbitale de ce système, que l'on attribue à l'émission d'ondes gravitationnelles. Un système encore plus remarquable fut découvert en 2004, le pulsar double PSR J0737-3039. Ce système est composé de deux étoiles à neutrons, qui sont toutes deux vues comme des pulsars. Ils forment le système avec une étoile à neutron le plus serré connu à ce jour, avec une période orbitale d'environ deux heures. Encore plus remarquable, l'inclinaison de ce système est très basse (le système est quasiment vu dans son plan orbital), au point qu'un phénomène d'éclipse se produit pendant quelques dizaines de secondes lors de la révolution du système. Cette éclipse n'est pas due au masquage du pulsar d'arrière-plan par la surface de celui d'avant-plan, mais au fait que les pulsars sont entourés d'une région fortement magnétisée, la magnétosphère, siège de phénomènes électromagnétiques complexes. Cette magnétosphère est susceptible d'empêcher la propagation du rayonnement issu du pulsar d'arrière-plan, offrant l'opportunité unique d'étudier la structure de la magnétosphère de ces objets.

Dans les années 1980, on découvrit les pulsars milliseconde, qui, comme leur nom l'indique, possèdent des périodes de quelques millisecondes (typiquement entre 2 et 5). Depuis 1982, le pulsar PSR B1937+21 possédait la fréquence de rotation la plus élevée. Sa fréquence de rotation s'élevait à 642 Hz. Au cours du mois de janvier 2006, une publication a fait état de la détection d'un pulsar baptisé PSR J1748-2446ad (ou Ter5ad pour faire plus court, le pulsar étant situé au sein de l'amas globulaire Terzan 5) et dont la fréquence de rotation s'élève à 716 Hz. La recherche des pulsars à la rotation la plus rapide est d'un intérêt élevé pour l'étude de ces objets. En effet, leur période de rotation maximale est directement liée à leur taille : plus leur taille est petite, plus leur vitesse de rotation maximale peut être élevée, ceci parce que la vitesse de rotation d'un objet est limitée par le fait que la force centrifuge ne peut excéder la force de gravitation, sans quoi l'objet perdrait spontanément la masse située dans ses régions équatoriales. La force centrifuge subie par les régions équatoriales augmente avec la taille de l'objet, alors que sa gravité de surface diminue. Un objet en rotation très rapide est ainsi signe d'un objet intrinsèquement petit, ce qui peut permettre de fixer sa structure interne, une étoile à neutrons très petite étant signe non pas d'un objet peu massif, mais d'un objet très compact.

Observation et détection des pulsars

[modifier | modifier le code]

Les pulsars sont en général plus facilement observables en radio. Leur détection requiert par contre un certain soin. En effet, la vitesse de propagation des ondes radio est très légèrement inférieure à celle de la lumière du fait de la densité très faible mais non nulle du milieu interstellaire. Les calculs indiquent que cette vitesse de propagation dépend de la longueur d'onde d'observation. En conséquence de quoi, le train de pulses d'un pulsar va arriver décalé d'une fréquence à l'autre, ce que l'on appelle mesure de dispersion. Si l'on observe sur une bande de fréquence trop large, alors le décalage des temps d'arrivée peut devenir supérieur à la période du pulsar, et l'on perd l'émission périodique de celui-ci. Pour détecter un pulsar, il convient donc d'observer des bandes de fréquences très étroites. Le problème est alors que la densité de flux reçue est très faible. En pratique, l'on contourne le problème en observant plusieurs bandes de fréquence et en regardant si l'on arrive à les combiner en un signal périodique une fois supposée la présence de dispersion.

Le tableau ci-dessous liste les principales opérations dédiées sur l'un des grands radiotélescopes terrestres en vue de détecter des pulsars.

Observatoire Fréquence
de recherche
(MHz)
Canaux et
bande passante
(MHz)
Échantillonnage
(ms)
Sensibilité
(mJy)
Région couverte Nombre
de pulsars
découverts
Année et références
Molonglo 408 4 - - - 31 1968[23], 1969[24]
Jodrell Bank 408 4 40 10 0°<l<40°
|b|<10°
31 1970[25],[26]
Arecibo 430 8 5,6 - 35°<l<75° et 170°<l<75°
|b|<4°
31 1974[27], 1975[28]
Molonglo 408 4 10 - δ<20° 155 1978[29]
Green Bank 408 16 16 - δ>20° 23 1982[30]
Green Bank 390 16 16 2 δ<-18° 34 1985[31],[32]
Green Bank 390 8 2 3 3 725 degrés carrés 20 1986[33]
Jodrell Bank 1400 40 2 1 -5°<l<95°, |b|<1° et
95°<l<105°, |b|<0,6°
40 1992[34]
Parkes 1500 80 et 320 0,3 et 1,2 2,5 et 1,0 270°<l<20°
|b|<10°
46 1992[35]
Arecibo 430 10 0,25 0,2 9 128 degrés carrés 19 1995[36]
Parkes 436 32 0,3 3 Ciel austral complet 101 1996[37]
Arecibo 430 8 0,25 0,5 680 degrés carrés 12 1996[38]
Arecibo 430 8 0,2 et 0,3 0,7 960 degrés carrés 12 1996[39]
Parkes 1374 96×3 0,125 0,5 260°<l<50°
5°<|b|<10°
69 2001[40]
Parkes 1374 96×3 0,25 0,17 260°<l<50°
|b|<5°
700 2001[41], 2002[42], 2003[43]

Physique des pulsars

[modifier | modifier le code]

Origine de l'émission « pulsée »

[modifier | modifier le code]
Illustration de l'effet « phare » produit par un pulsar.

Les impulsions observées sont produites par un rayonnement issu de l'étoile à neutrons en rotation. Du fait que le rayonnement n'est pas isotrope, la rotation de l'étoile provoque une modulation temporelle à la réception. L'interprétation en est que les processus de rayonnement sont liés au champ magnétique de l'étoile à neutrons, et que l'axe du champ magnétique n'est pas aligné avec l'axe de rotation de l'étoile. Ainsi, le rayonnement, dont il semble vraisemblablement qu'il soit centré sur les pôles magnétiques de l'étoile, est-il reçu sous forme de deux faisceaux orientés dans des directions opposées, ces deux faisceaux balayant l'espace, du fait de la rotation de l'étoile à neutron en formant un cône d'émission d'une certaine ampleur, à la manière de la lumière projetée par un phare côtier.

La modélisation la plus convaincante du scénario ci-dessus considère l'étoile à neutrons comme un dipôle magnétique en rotation.

Le champ magnétique est supposé dipolaire et aligné avec l'axe de rotation de l'étoile à neutrons[44]. Le fort champ magnétique de l'étoile à neutrons, couplé avec la vitesse élevée de sa rotation, induit un fort champ électrique[44]. Celui-ci enlève des particules chargées de la surface de l'étoile à neutrons et en emplit la magnétosphère[44]. Dans celle-ci, les particules chargées sont en corotation avec l'étoile à neutrons jusqu'à un rayon caractéristique : c'est le rayon du cylindre de lumière, où la vitesse des particules chargées atteint la vitesse de la lumière dans le vide[44]. Au-delà du rayon du cylindre de lumière, les lignes de champ magnétique s'ouvrent car, si elles restaient fermées, la vitesse des particules chargées excèderait celle de la lumière dans le vide[44]. Les particules chargées s'échappent via les lignes de champ ouvertes : c'est le vent de pulsar[44]. Le long des lignes de champ ouvertes, plus près de la surface de l'étoile à neutrons, les particules chargées sont accélérées par les différences de potentiels[44]. Les particules chargées accélérées émettent un rayonnement électromagnétique[44]. Si l'axe du champ magnétique n'est pas aligné avec l'axe de rotation, un observateur peut détecter des impulsions périodiques de rayonnement électromagnétique et l'étoile à neutrons est alors un pulsar[44].

Une telle configuration est amenée à perdre de l'énergie lors de sa rotation, et la période des signaux du pulsar doit peu à peu s'allonger avec le temps. Ce phénomène de ralentissement des pulsars est en effet observé de façon quasi systématique pour ces objets[45]. De façon plus précise, il est possible de prédire la forme exacte du ralentissement observé des pulsars. D'une part, il est possible de comparer l'âge déduit de l'observation du ralentissement avec l'âge réel du pulsar quand celui-ci est connu (comme pour le pulsar du Crabe), d'autre part, la loi d'évolution temporelle de la période de rotation du pulsar doit dépendre d'un paramètre appelé indice de freinage, dont la valeur attendue est 3. Cet indice est malheureusement assez difficile à mesurer (il ne peut être mis en évidence en quelques années que sur des pulsars jeunes), mais la valeur trouvée est souvent relativement proche de 3, quoique presque systématiquement inférieure à cette valeur. La raison de cet écart n'est pas bien connue à l'heure actuelle.

La population des pulsars : le diagramme « P-P point »

[modifier | modifier le code]
Représentation de l'ensemble de pulsars connus début 2008 dans un diagramme montrant en abscisse leur période P (exprimée en secondes) et en ordonnée leur ralentissement (exprimé en secondes par seconde, soit un nombre sans dimension). Quelques types de pulsar sont représentés par divers codes de couleurs. Les pulsars ordinaires sont en rouge (+), les pulsars possédant une émission de haute énergie sont en bleu (*), parmi ceux-ci les pulsars X anormaux sont en vert (×) et les pulsars présents dans les systèmes binaires sont en violet (carrés). De façon manifeste, les différentes sous-classes de pulsars ne se répartissent pas aléatoirement dans le diagramme.

Le phénomène de ralentissement des pulsars se traduit par une lente augmentation de leur période P. Cet accroissement est traditionnellement noté P ˙ {\displaystyle {\dot {P}}} {\displaystyle {\dot {P}}} (prononcer P point, P dot en anglais), la dérivée temporelle d'une quantité physique étant en général notée avec un point surmontant ladite quantité. Le temps caractéristique avec lequel la période augmente est de l'ordre de l'âge du pulsar. Ces objets étant pour la plupart détectables pendant plusieurs millions d'années, le taux d'accroissement de la période d'un pulsar est extrêmement lent. Même si ce taux d'accroissement est relativement facile à mettre en évidence (en quelques heures d'observation seulement), il n'en demeure pas moins que les pulsars peuvent être vus comme des horloges naturelles extraordinairement stables, dont la stabilité à long terme est comparable à celle des meilleures horloges atomiques terrestres.

Le diagramme P-P point révèle plusieurs types de pulsar.

  • Le gros de la population des pulsars a une période de rotation centrée sur une seconde (entre 0,2 et 2 secondes) et un ralentissement entre 10-14 et 10-16. Ces deux chiffres illustrent l'extrême stabilité du signal émis par un pulsar. Le temps caractéristique mis par sa période pour varier d'un facteur 2 (en supposant que la période varie linéairement avec le temps) est égal à P / P ˙ {\displaystyle P/{\dot {P}}} {\displaystyle P/{\dot {P}}}, soit, avec des valeurs de 1 seconde et 10-15 pour la période et le ralentissement, 1015 secondes, soit plusieurs dizaines de millions d'années. L'amplitude du ralentissement est directement liée au champ magnétique du pulsar. Celui-ci est extrêmement élevé, essentiellement parce que lors de l'effondrement du cœur de l'étoile qui donne naissance à la supernova, le flux magnétique B R2 est conservé, où B est le champ magnétique et R le rayon de l'étoile. R passant d'une valeur de plusieurs dizaines de milliers de kilomètres à une dizaine de kilomètres, le champ magnétique se voit considérablement augmenté.
  • Certains pulsars ne sont pas uniquement observés dans le domaine radio, mais présentent une émission modulée de haute énergie, c'est-à-dire dans le domaine des rayons X ou des rayons gamma. Ces pulsars ont un ralentissement très élevé, supérieur à 10-14 voire 10-10. La valeur élevée du ralentissement indique des objets jeunes, hypothèse compatible avec une émission de haute énergie. Ces pulsars à émission de haute énergie se scindent en deux populations distinctes : une avec une courte période (de l'ordre de 0,1 seconde) et un ralentissement modérément élevé (entre 10-13 et 10-14 s.s−1, l'autre avec une période très longue (entre 5 et 12 secondes) et un ralentissement très élevé (pouvant dépasser 10-10 s.s−1). Cette seconde classe représente ce que l'on appelle les pulsars X anormaux (voir ci-dessous).
  • Il existe des pulsars situés dans des systèmes binaires. Ceci n'est pas surprenant dans la mesure où la majorité des étoiles naissent dans les systèmes binaires. Une étoile a une durée de vie, d'autant plus brève que sa masse est élevée. Une étoile massive, à même de produire en fin de vie une supernova puis une étoile à neutrons, va ainsi laisser cette dernière en orbite autour de son compagnon. Il peut paraître surprenant qu'un système binaire survive à une explosion de supernova. Les calculs indiquent cependant que c'est le cas. Dans une telle configuration, la seconde étoile va poursuivre son évolution. Lors de celle-ci, elle va être susceptible de perdre de la masse, par exemple en raison du phénomène de vent stellaire, ou lors d'une phase dite de géante rouge, où son volume augmente considérablement au point qu'une partie de ses couches externes soient captées par l'étoile à neutron voisine (on parle alors d'accrétion). Dans un tel cas, la matière ainsi arrachée suit une trajectoire complexe avant de s'écraser en spiralant à la surface de l'étoile à neutrons, à laquelle elle confère le moment cinétique qu'elle a acquis. Ce phénomène provoque une accélération de la période de rotation du pulsar, qui se voit ainsi « recyclé », acquérant une nouvelle fois une période de rotation très rapide, typiquement de 2 à 20 millisecondes. De tels pulsars sont appelés pulsars milliseconde. Leur ralentissement est par contre très faible, signe que leur champ magnétique a considérablement baissé. La raison expliquant ce phénomène est mal connue aujourd'hui, il semble qu'elle soit intimement liée au processus d'accrétion qui recycle le pulsar.

Évolution des pulsars

[modifier | modifier le code]

Partant d'une période de rotation initiale sans doute très rapide (quelques dizaines de millisecondes, voire quelques millisecondes seulement), les pulsars ralentissent lentement. De temps en temps, on observe de très brusques, mais très faibles, variations de cette vitesse de rotation, un phénomène appelé glitch[46]. Une interprétation de ce phénomène était que le pulsar devait régulièrement ajuster la forme de sa croûte solide, du fait du ralentissement de sa rotation, la croûte devant devenir de plus en plus sphérique. On parle ainsi de « tremblement d'étoile », bien que le terme de « tremblement de croûte » soit plus opportun (starquake ou crustquake en anglais, par analogie à earthquake qui signifie « tremblement de terre »). Cette interprétation est compatible avec les observations pour certains pulsars, mais se heurte au comportement d'autres pulsars, notamment celui de Vela[46]. Il est aujourd'hui établi qu'au moins pour certains pulsars, le phénomène de glitch est dû à un couplage complexe entre la croûte solide de l'étoile à neutrons et son cœur, qui est superfluide[46]. Un modèle décrit ainsi l'étoile à neutrons comme composée de deux couches, la croûte et le cœur, qui voient leur rotation amenée à se désolidariser brusquement avant que par viscosité les deux se synchronisent à nouveau (à l'instar d'un œuf frais auquel on impose de l'extérieur un mouvement de rotation : la rotation de la coquille de l'œuf, au début rapide, va ralentir à mesure que les forces visqueuses entraînent le blanc et le jaune de l'œuf dans une rotation à la même vitesse que celle de la coquille, mais du fait de la conservation du moment cinétique global, la rotation d'ensemble à la configuration d'équilibre entre les couches, en rotation synchrone, est plus lente que celle d'origine, où seule la coquille est en rotation).

Dans les arts et la culture

[modifier | modifier le code]
  • Les pulsars ont été utilisés dans des compositions musicales pour leur aspect métronomique, notamment dans Le Noir de l'étoile de Gérard Grisey[47] (1990), ou Pulstar, de Vangelis, dans son album Albedo 0.39 (1976)
  • La pochette de l'album Unknown Pleasures (1979) du groupe Joy Division[22] représente les ondes du tout premier pulsar découvert (le pulsar CP 1919).
  • Les pulsars sont au cœur du jeu de société Pulsar 2849 (2017), de Vladimir Suchy.

Notes et références

[modifier | modifier le code]

Notes

[modifier | modifier le code]

Références

[modifier | modifier le code]
  1. ↑ Jean Rösch, « Les progrès récents de l'astronomie », L'Astronomie, vol. 83,‎ février 1969, p. 79-85 (Bibcode 1969LAstr..83...79R, lire en ligne [PDF], consulté le 13 janvier 2016).
  2. ↑ a b et c Annie Baglin, « Les pulsars », L'Astronomie, vol. 83,‎ juin 1969, p. 233-243 (Bibcode 1969LAstr..83..233B, lire en ligne [PDF], consulté le 13 janvier 2016).
  3. ↑ a b et c « Pulsar », dans le Dictionnaire de l'Académie française, Centre national de ressources textuelles et lexicales (consulté le 13 janvier 2016).
  4. ↑ a et b Entrée « pulsar », sur larousse.fr/dictionnaires/francais, Larousse (consulté le 13 janvier 2016).
  5. ↑ (en) Yogesh Maan, Tomographic studies of pulsar radio emission cones and searches for radio counterparts of gamma-ray pulsars (thèse de doctorat sous la direction d'Avinash A. Deshpande), Bangalore, Indian Institute of Science, juillet 2013, XVI-180 p. (lire en ligne [PDF]), chap. 1 (« Introduction »), sect. 1.1 (« A brief introduction to pulsars »), p. 1, n. 1.
  6. ↑ (en) Dirk ter Haar, « Pulsars », Bulletin of the Astronomical Society of India, vol. 7,‎ juillet 1979, p. 56-60 (Bibcode 1979BASI....7...56T, lire en ligne [PDF], consulté le 13 janvier 2016).
  7. ↑ (en) René Paul Breton, Radio pulsars in binary systems (thèse de doctorat), Montréal, Université McGill, décembre 2008, XVII-216 p. (Bibcode 2009PhDT.......223B, arXiv 0907.2623, lire en ligne [PDF]), chap. 1 (« Introduction »), sect. 1.2 (« Historical background »), § 1.2.1 (« The great discovery »), p. 9.
  8. ↑ (en) « Pulsar discoverer Jocelyn Bell Burnell wins $3-million Breakthrough Prize », sur Nature (journal), 6 septembre 2018 (consulté le 13 avril 2023)
  9. ↑ (en) « Jocelyn Bell Burnell discovered pulsars, but someone else won the Nobel », sur Popular Science, 25 mai 2022 (consulté le 13 avril 2023)
  10. ↑ Entrée « pulsar » dans Jean-Paul Kurtz, Dictionnaire étymologique, lexicologique et historique des anglicismes et des américanismes, t. 3 : de puddler à zoom., Paris, Books on Demand, 2013, 502 p., 22 cm (ISBN 978-2-322-03441-3 et 2-322-03441-X, OCLC 931693895, BNF 43731616), p. 997 [lire en ligne (page consultée le 13 janvier 2016)].
  11. ↑ (en) Bernard F. Burke et Francis Graham-Smith, An introduction to radio astronomy [« Une introduction à la radioastronomie »], Cambridge et New York, Cambridge University Press, 2010 3e éd. (réimpr. 2014) (1re éd. 1996), XII-444 p., 24,4 × 17 cm (ISBN 978-0-521-87808-1, 0-521-87808-X et 1-107-67260-0, OCLC 495268052, BNF 42122022, présentation en ligne), chap. 12 (« Pulsars »), p. 253 [lire en ligne (page consultée le 13 janvier 2016)].
  12. ↑ Jérôme Novak et Micaela Oertel, « Les étoiles à neutrons : des sondes cosmiques », Dossier Pour la Science, no 83 « Les mystères du cosmos : du Big Bang aux trous noirs »,‎ avril-juin 2014 (lire en ligne, consulté le 13 janvier 2016).
  13. ↑ (en) High Energy Astrophysics Science Archive Research Center (NAS), « Jocelyn Bell Burnell », sur StarChild, avril 2018 (consulté le 17 avril 2018).
  14. ↑ (en) Elizabeth H. Oakes, Encyclopedia of World Scientists : L-Z, New York, Infobase Publishing, 2007 (1re éd. 2001), 913 p. (ISBN 978-0-8160-6158-7 et 0-8160-6158-0), p. 51-52, 330.
  15. ↑ (en) Encyclopædia Britannica, « Jocelyn Bell Burnell », 18 septembre 2015 (consulté le 17 avril 2018).
  16. ↑ a b et c Tristan Vey, « Ces scientifiques privés injustement de Nobel », Le Figaro, 4 octobre 2010 (ISSN 0182-5852, consulté le 17 avril 2018).
  17. ↑ (en) Fondation Nobel, « The Nobel Prize in Physics 1974 » [« Le prix Nobel de physique 1974 »], sur www.nobelprize.org, avril 2018 (consulté le 17 avril 2018).
  18. ↑ (en) The New York Times, « Hoyle Disputes Nobel Physics Award », 22 mars 1975 (consulté le 17 avril 2018).
  19. ↑ François Rothen (préf. Michel Mayor), La fascination des ailleurs : chasseurs de planètes, Lausanne, Presses polytechniques et universitaires romandes, coll. « Focus science », 2015, 303 p. (ISBN 978-2-88915-140-0 et 2-88915-140-9, OCLC 929823933, BNF 44399667), p. 133-135.
  20. ↑ Suzy Collin-Zahn, Des quasars aux trous noirs, Les Ulis, EDP Sciences, coll. « Sciences & histoire », 2009, 455 p. (ISBN 978-2-7598-0377-4 et 2-7598-0377-5, OCLC 837924295, BNF 41407454), p. 246.
  21. ↑ Une binaire X peut également est être composée de la combinaison étoile-trou noir, qui peut être très difficile à distinguer d'une combinaison étoile-pulsar.
  22. ↑ a et b Jean-Pierre Luminet, « La mort des étoiles », Études sur la mort, no 124,‎ 2003, p. 9-20 (lire en ligne, consulté le 29 décembre 2016). Via Cairn.info.
  23. ↑ (en) M. I. Large, A. E. Vaughan & R. Wielebinski (de), Pulsar Search at the Molonglo Radio Observatory, Nature, 220, 753-756 (1968) Voir en ligne (accès restreint).
  24. ↑ (en) A. E. Vaughan, M. I. Large & R. Wielebinski, Three New Pulsars, Nature, 222, 963 (1969) Voir en ligne (accès restreint).
  25. ↑ (en) J. G. Davies, M. I. Large & A. C. Pickwick, Five New Pulsars, Nature, 227, 1123-1124 (1970) Voir en ligne (accès restreint).
  26. ↑ (en) J. G. Davies & M. I. Large, A single-pulse search for pulsars, Monthly Notices of the Royal Astronomical Society, 149, 301-310 (1970) Voir en ligne.
  27. ↑ (en) R. A. Hulse & J. H. Taylor, A High-Sensitivity Pulsar Survey, The Astrophysical Journal Letters, 191, L59-L61 (1974) Voir en ligne.
  28. ↑ (en) R. A. Hulse & J. H. Taylor, A deep sample of new pulsars and their spatial extent in the galaxy, The Astrophysical Journal Letters, 201, L55-L59 (1975) Voir en ligne.
  29. ↑ (en) Richard Manchester et al., The second Molonglo pulsar survey - discovery of 155 pulsars, Monthly Notices of the Royal Astronomical Society, 185, 409-421 (1978) Voir en ligne.
  30. ↑ (en) M. Damashek et al., Northern Hemisphere pulsar survey - A third radio pulsar in a binary system, The Astrophysical Journal Letters, 253, L57-L60 (1982) Voir en ligne.
  31. ↑ (en) G. H. Sokes et al., A survey for short-period pulsars, Nature, '317, 787-788 (1985) Voir en ligne (accès restreint).
  32. ↑ (en) R. J. Dewey et al., A search for low-luminosity pulsars, The Astrophysical Journal Letters, 294, L25-L29 (1985) Voir en ligne.
  33. ↑ (en) G. H. Stokes et al., Results of two surveys for fast pulsars, The Astrophysical Journal, 311, 694-700 (1986) Voir en ligne.
  34. ↑ (en) T. R. Clifton et al., A high-frequency survey of the galactic plane for young and distant pulsars, Monthly Notices of the Royal Astronomical Society, 254, 177-184 (1992) Voir en ligne.
  35. ↑ (en) Simon Johnston et al., A high-frequency survey of the southern Galactic plane for pulsars, Monthly Notices of the Royal Astronomical Society, 255, 401-411 (1992) Voir en ligne.
  36. ↑ (en) R. S. Foster et al., A High Galactic Latitude Pulsar Survey of the Arecibo Sky, The Astrophysical Journal, 454, 826-830 (1995) Voir en ligne.
  37. ↑ (en) Richard Manchester et al., The Parkes Southern Pulsar Survey. I. Observing and data analysis systems and initial results, Monthly Notices of the Royal Astronomical Society, 279, 1235-1250 (1996) Voir en ligne.
  38. ↑ (en) Fernando Camilo et al., Princeton-Arecibo Declination-Strip Survey for Millisecond Pulsars. I, The Astrophysical Journal, 469, 819-827 (1996) Voir en ligne.
  39. ↑ (en) P. S. Ray et al., A Survey for Millisecond Pulsars, The Astrophysical Journal, 470, 1103-1110 (1996) Voir en ligne.
  40. ↑ (en) R. T. Edwards et al., The Swinburne intermediate-latitude pulsar survey, Monthly Notices of the Royal Astronomical Society, 326, 358-374 (2001) Voir en ligne.
  41. ↑ (en) Richard Manchester et al., The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars, Monthly Notices of the Royal Astronomical Society, 328, 17-35 (2001) Voir en ligne.
  42. ↑ (en) D. J. Morris et al., The Parkes Multibeam Pulsar Survey - II. Discovery and timing of 120 pulsars, Monthly Notices of the Royal Astronomical Society, 335, 275-290 (2002) Voir en ligne.
  43. ↑ (en) M. Kramer (en) et al., The Parkes Multibeam Pulsar Survey - III. Young pulsars and the discovery and timing of 200 pulsars, Monthly Notices of the Royal Astronomical Society, 342, 1299-1324 (2003) Voir en ligne.
  44. ↑ a b c d e f g h et i Webb 2023, sec. 2.3, § 2.3.6, p. 133.
  45. ↑ Il existe quelques exceptions, qui peuvent se ranger dans deux classes : les pulsars compris dans des systèmes binaires sont susceptibles de voir leur rotation s'accélérer quand il captent de la matière issue de leur étoile compagnon (phénomène appelé accrétion), et une accélération apparente de la rotation des pulsars peut se produire si l'on observe le pulsar accélérer dans l'espace selon une direction orientée vers l'observateur, par exemple au sein de certains amas globulaires (effet Shklovsky).
  46. ↑ a b et c (en) Marco Antonelli, Alessandro Montoli et Pierre Pizzochero, « Insights into the physics of neutron star interiors from pulsar glitches. », dans Astrophysics in the XXI Century with Compact Stars, novembre 2022 (DOI 10.48550/arxiv.2301.12769, lire en ligne), p. 219–281
  47. ↑ « Le Noir de l'Étoile, Gérard Grisey », sur brahms.ircam.fr (consulté le 1er septembre 2019).

Voir aussi

[modifier | modifier le code]

Sur les autres projets Wikimedia :

  • Pulsar, sur Wikimedia Commons
  • pulsar, sur le Wiktionnaire

Bibliographie

[modifier | modifier le code]
  • [Webb 2023] Natalie Webb, « Objets compacts », dans Natalie Webb (éd.), Gravitation, Londres, ISTE, coll. « Encyclopédie / sciences / Univers / cosmologie et relativité générale », mars 2023, 1re éd., VIII-352 p., 15,2 × 22,9 cm (ISBN 978-1-78948-120-4, EAN 9781789481204, OCLC 1377288035, BNF 47234398, SUDOC 269367470, présentation en ligne, lire en ligne), chap. 2, p. 109-183. Ouvrage utilisé pour la rédaction de l'article

Articles connexes

[modifier | modifier le code]
  • Types de pulsar et phénomène les produisant :
    • Supernova à effondrement de cœur, le processus à l'origine de la formation des pulsars
    • Étoile à neutrons, l'objet physique qui produit au début de sa vie le phénomène de pulsar
    • Pulsar milliseconde, ou pulsar recyclé, des pulsars âgés qui à la suite d'une accrétion de matière redeviennent visibles
    • Pulsar X anormal, des pulsars jeunes émettant de façon très intense dans le domaine des rayons X
    • Magnétar, les pulsars au champ magnétique le plus élevé
    • Pulsar X, les pulsars à émission de haute énergie
    • Pulsar gamma, les pulsars à l'émission de plus haute énergie
    • Pulsar binaire, les pulsars présent dans des systèmes binaires (les trois configurations connues étant étoile à neutron-étoile à neutrons, étoile à neutrons-naine blanche, ou étoile à neutrons-étoile ordinaire, aucun couple étoile à neutrons-trou noir n'étant connu à ce jour)
    • Pulsar double, configuration de deux étoiles à neutrons dont les deux membres sont observés en tant que pulsar ; un seul objet de ce type est connu à l'heure actuelle
  • Quelques pulsars célèbres :
    • PSR B1919+21, le premier découvert en 1967
    • PSR B0531+21, ou pulsar du Crabe, associé à la supernova historique SN 1054
    • PSR B0833-45, ou pulsar de Vela, un autre pulsar jeune découvert tôt dans l'histoire des pulsars
    • PSR J0633+1746, ou Geminga, le seul pulsar aujourd'hui identifié ne présentant pas d'émission radio connue (Il est probable qu'un certain nombre de sources de rayons gamma aujourd'hui identifiées soient elles aussi des pulsars sans émission radio, mais leur émission gamma est aujourd'hui trop faible pour que leur caractère puisse aujourd'hui mis en évidence.)
    • PSR B1257+12, le premier astre autour duquel une planète extrasolaire fut découverte (une planète de pulsar)
    • PSR B1937+21, le premier pulsar milliseconde
    • PSR B1913+16, le premier pulsar binaire
    • PSR J0737-3039, le premier pulsar double
    • Voir aussi Liste de pulsars notables
  • Termes techniques associés :
    • Désignation des pulsars
    • Ralentissement des pulsars
    • Âge caractéristique
    • Âge cinématique
    • Indice de freinage
    • Parallaxe chronométrique
    • Effet Chklovski
    • Bruit chronométrique
    • Glitch (astronomie)
    • Luminosité de ralentissement
    • Mesure de dispersion
    • Mesure de rotation
  • Plus spécifiquement lié au signal radio lui-même :
    • Pulse (astronomie)
    • Sous pulse
    • Dérive de pulse
    • Annulation de pulse
    • Pulse géant
    • Paramètre d'activité
    • Microstructure
  • Quelques acteurs de l'étude des pulsars :
    • Jocelyn Bell Burnell et Antony Hewish, les découvreurs
    • Franco Pacini et Thomas Gold, les théoriciens en ayant donné la description correcte
    • Francis Graham-Smith
    • Victoria Kaspi
    • Andrew G. Lyne
    • Russell Alan Hulse et Joseph Hooton Taylor
    • Richard Manchester
    • Aleksander Wolszczan
  • Les principaux observatoires ayant découvert des pulsars :
    • Mullard Radio Astronomy Observatory
    • Observatoire d'Arecibo
    • Observatoire de Parkes
    • Observatoire de Jodrell Bank
    • Observatoire de Molonglo
    • Observatoire de Green Bank

Liens externes

[modifier | modifier le code]
  • (en) Catalogue des pulsars, maintenu par l’Australia Telescope National Facility
  • (en) Page dédiée aux pulsars sur le site de l'observatoire de Jodrell Bank, avec notamment :
    • (en) Le « son » des pulsars, retranscription en termes de son du signal radio périodique de certains pulsars connus
  • (en) Page sur les pulsars, sur le site du radiotélescope d'Arecibo
  • (en) « pulsar », Oxford Index, notice d'autorité no 20110803100354447 Accès libre, Oxford Reference, Oxford, OUP.
  • Notices dans des dictionnaires ou encyclopédies généralistesVoir et modifier les données sur Wikidata :
    • Britannica
    • Den Store Danske Encyklopædi
    • Larousse
    • Store norske leksikon
    • Universalis
  • Notices d'autoritéVoir et modifier les données sur Wikidata :
    • BnF (données)
    • IdRef
    • LCCN
    • GND
    • Espagne
    • Israël
    • Tchéquie
v · m
Étoiles
Classes de luminosité et types spectraux
  • Classes de types spectraux :
    • Type précoce
    • Type intermédiaire
    • Type tardif
  • Hypergéante (0) :
    • Variable lumineuse bleue
    • bleue (O0-A0)
    • jaune (fin A0 - début K0)
    • rouge (K0-M0)
  • Supergéante (I) :
    • bleue (OI-BI)
    • blanche (AI)
    • jaune (FI-GI)
    • rouge (KI-MI)
  • Géante lumineuse (II)
  • Géante (III) :
    • bleue (OIII-BIII-certaines AIII)
    • rouge (KIII-MIII)
  • Sous-géante (IV)
  • Naine (séquence principale = V) :
    • bleue (OV)
    • bleu-blanc (BV)
    • blanche (AV)
    • jaune-blanc (FV)
    • jaune (GV)
    • orange (KV)
    • rouge (MV)
  • Sous-naine (VI) :
    • Type O (OVI)
    • Type B (BVI)
  • Naine (stade évolué) :
    • bleue
    • blanche Article de qualité
    • rouge
    • noire
  • Classes particulières :
    • Étoile de type solaire
    • Naine brune (objet substellaire)
Types
  • Étoile double
  • Étoile en fuite
  • Étoile intergalactique
  • Traînarde bleue
  • Étoile Be
    • Étoile à enveloppe
  • Étoile B[e]
  • Étoile binaire
  • Étoile variable
  • Étoile multiple
  • Étoiles hypothétiques
Binaires
  • À contact
  • À éclipses
  • À enveloppe commune
  • Astrométrique
  • Détachée
  • Semi-détachée
  • Spectroscopique
  • TTL
  • Visuelle
  • X
  • X à faible masse
  • X à forte masse
  • gamma
  • Sursauteur X
  • Étoile symbiotique
  • Pulsar binaire
  • Microquasar
Variables
  • Désignation des étoiles variables
  • Céphéide
  • Cataclysmique
    • Polaire
  • Éruptive (type UV Ceti)
  • Herbig Ae/Be
  • Lumineuse bleue
  • Semi-régulière
  • Type Alpha2 Canum Venaticorum
  • Type Beta Lyrae
  • Type BY Draconis
  • Type Delta Scuti
  • Type FU Orionis
  • Type Mira
  • Type RR Lyrae
  • Type T Tauri
  • Type W Virginis
  • Wolf-Rayet
  • Sursauteur gamma mou
  • Blanche à pulsations
  • À battements de cœur
Multiples
  • Système stellaire
  • Amas stellaire
  • Superamas stellaire
  • Association stellaire
  • Association OB
  • Amas ouvert
  • Amas globulaire
  • Blue blobs
Compositions
  • Métallicité
  • Am
  • Ap et Bp
    • roAp
  • Baryum
  • Carbone
  • CH
  • CN
  • Hélium
  • Hélium extrême
  • He-weak
  • Lambda Bootis
  • Mercure et manganèse
  • PG 1159
  • Plomb
  • Type S
  • Technétium
Objets compacts
  • Proto-étoile à neutrons
  • Étoile à neutrons
  • Magnétar
  • Pulsar
    • Désignation
    • Double
    • Milliseconde
    • X
    • X anormal
  • Trou noir
  • Microquasar
  • Quasar
Hypothétiques
  • Coatlicue
  • Étoile congelée
  • Étoile de fer
  • Étoile noire (gravité semi-classique)
  • Étoile noire (matière noire)
  • Étoile à préons
  • Étoile à quarks
  • Gravastar
  • Naine bleue
  • Étoile Q
  • Objet de Thorne-Żytkow
  • Quasi-étoile
Classifications
  • Désignations stellaires
    • Bayer
    • Flamsteed
  • Chronologie
  • Diagramme de Hertzsprung-Russell
    • Type spectral
    • Classe de luminosité
    • Séquence principale
    • Branche des géantes rouges
    • Bande d'instabilité
    • Blue loop
    • Red clump
    • Branche asymptotique des géantes
    • Étoile post-AGB
  • Population stellaire
    • I
    • II
    • III
Catalogues
  • Barnard
  • Henry Draper
  • Gliese
  • Hipparcos
  • Messier
  • NGC
  • Washington (étoiles doubles)
  • Aitken (étoiles doubles)
Listes
  • Brillantes
  • Brillantes en apparence
  • Brillantes et proches
  • Extrêmes
  • Géantes
  • Hypothétiques
  • Plus massives
  • Moins massives
  • Noms traditionnels
  • Noms officiellement reconnus par l'UAI
  • Proches
Formation
(pré-séquence principale)
  • Nuage moléculaire
    • Géant
  • Disque d'accrétion
  • Instabilité gravitationnelle
  • Nébuleuse obscure
  • Région HI
  • Région HII
  • Globule de Bok
  • Protoétoile
  • Globule obscur
  • Fonction de masse initiale
  • Objet Herbig-Haro
  • Pré-séquence principale
  • Trajet de Hayashi
Nébuleuses
(post-séquence principale)
  • Rémanent de supernova
  • Nébuleuse de vent de pulsar
  • Protonébuleuse planétaire
  • Nébuleuse planétaire
Physique stellaire
  • Astérosismologie
  • Bulle de Wolf-Rayet
  • Champ magnétique stellaire
  • Cinématique stellaire
  • Compacité
  • Effondrement gravitationnel
  • Évolution stellaire
  • Freinage magnétique
  • Instabilité de Rayleigh-Taylor
  • Jet
  • Limite d'Eddington
  • Limite d'Oppenheimer-Volkoff
  • Lobe de Roche
  • Masse de Chandrasekhar
  • Mécanisme de Kelvin-Helmholtz
  • Nucléosynthèse stellaire
  • Micronova
  • Nova
    • Naine
    • Rouge lumineuse
  • Kilonova
  • Supernova
    • À effondrement de cœur
    • Par production de paires
    • Thermonucléaire
  • Hypernova
  • Unnova
  • Rayon de Schwarzschild
  • Réaction alpha
  • Rotation stellaire
  • Sursaut gamma
  • Transfert de rayonnement
  • Excès de couleur
  • Flash de l'hélium
  • Tremblement d'étoile
  • Zone de convection
Soleil
  • Activité
  • Apex
  • Boucle coronale
  • Chromosphère
  • Constante
  • Couronne
  • Cycle
  • Éclipse
  • Éjection de masse coronale
  • Éruption
    • 1859
    • 1989
    • 2012
  • Filament
  • Héliopause
  • Héliosismologie
  • Onde de Moreton
  • Photosphère
  • Protubérance
  • Rayonnement
  • Région de transition
  • Spicule
  • Sursaut
  • Vent
v · m
Étoile à neutrons
Types
  • Radio-quiet (en)
  • Pulsar
Pulsars isolés
  • Magnétar
  • Sursauteur gamma mou
  • Pulsar X anormal
  • RRAT
Pulsars binaires
  • Binaire
  • X
  • Binaire X
  • Sursauteur X
  • Liste (en)
  • Milliseconde
  • Binaire Be/X
  • Accélération de la rotation d'une étoile à neutrons
Propriétés
  • Blitzar
  • Sursaut radio rapide
  • Accrétion de Bondi
  • Sursaut gamma
  • Glitch
  • Neutronium
  • Oscillation d'étoile à neutrons
  • Pulsar optique
  • Pulsar kick (en)
  • Oscillations quasi périodiques
  • Étoile relativiste
  • Processus rp
  • Starquake (en)
  • Timing noise (en)
  • Limite d'Oppenheimer-Volkoff
  • Processus Urca
Articles liés
  • Objet compact
  • Étoile étrange
  • Étoile exotique
  • Supernova
  • Rémanent de supernova
  • (voir aussi supernova (en))
  • Hypernova
  • Quark-nova
  • Naine blanche
  • Trou noir stellaire
  • (voir aussi Trou noir)
  • Étoile radio
  • Planète de pulsar
  • Nébuleuse de vent de pulsar
  • Objet de Thorne-Żytkow
Découverte
  • LGM-1
  • V779 Centauri
  • Historique des naines blanches, des étoiles à neutrons et des supernovas
  • Liste de pulsars notables
Satellite
investigation
  • Rossi X-ray Timing Explorer
  • Fermi Gamma-ray Space Telescope
  • Compton Gamma-Ray Observatory
  • Chandra
Autre
  • Navigation basée sur des pulsars X
  • Tempo software program (en)
  • Astropulse
  • The Magnificent Seven
  • icône décorative Portail de l’astronomie
  • icône décorative Portail des étoiles
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Pulsar&oldid=228689317 ».
Catégories :
  • Page avec une erreur de rendu de Phonos
  • Pulsar
  • Source gamma
Catégories cachées :
  • Page utilisant l'extension Phonos
  • Article contenant un appel à traduction en allemand
  • Article contenant un appel à traduction en anglais
  • Catégorie Commons avec lien local identique sur Wikidata
  • Page utilisant P1417
  • Page utilisant P8313
  • Page utilisant P6058
  • Page utilisant P4342
  • Page utilisant P3219
  • Page pointant vers des bases externes
  • Page pointant vers des dictionnaires ou encyclopédies généralistes
  • Article de Wikipédia avec notice d'autorité
  • Page utilisant le modèle Autorité avec un paramètre local
  • Portail:Astronomie/Articles liés
  • Portail:Sciences de la Terre et de l'Univers/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Étoiles/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id