Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde[1] :
- Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ?
- ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel[2] ?
La réponse affirmative fut donnée par Aleksandr Gelfond en 1934, et raffinée par Theodor Schneider en 1935. Ce résultat est connu sous le nom de théorème de Gelfond ou de Gelfond-Schneider.
Une généralisation en fut conjecturée par Gelfond et démontrée par Alan Baker.
Notes et références
- ↑ Julien Haristoy et Édouard Oudet, « Autour du septième problème de Hilbert : une excursion en transcendance », L'Ouvert (revue de l'IREM de Strasbourg et de l'APMEP d'Alsace), vol. 107, , p. 39-54 (lire en ligne).
- ↑ Lorsque b est rationnel, la question ne se pose pas : ab est algébrique.