Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Test de Chow — Wikipédia
Test de Chow — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Test de Chow
Type
Test statistique, régression, time series analysis (en)Voir et modifier les données sur Wikidata
Nommé en référence à
Gregory Chow (en)Voir et modifier les données sur Wikidata

modifier - modifier le code - modifier WikidataDocumentation du modèle

Le test de Chow est un test statistique et économétrique afin de déterminer si les coefficients de deux séries linéaires sont égaux. Les coefficients sont établis par régression linéaire.

Il est surtout utilisé dans le cadre de séries temporelles pour savoir s'il y a une cassure significative par une certaine date qui séparerait les données en deux blocs ; il permet également d'évaluer l'impact des variables indépendantes sur les deux groupes ainsi construits. Ce test s'appuie sur la loi de Fisher.

Cassure temporelle dans un modèle Deux modèles différents

Il y a une cassure dans le modèle en x = 1,7, il faut donc effectuer une régression sur l'intervalle [0 ; 1,7] et l'intervalle [1,7 ; 4]. Cela donnera une meilleure estimation qu'une régression globale et compactée en un modèle

On a deux modèles (rouge et vert) comparés sur un même graphique ; séparer la régression donne de meilleures estimations qu'une estimation globale (droite noire)

Soit le modèle :

y t = a + b x 1 t + c x 2 t + ε . {\displaystyle y_{t}=a+bx_{1t}+cx_{2t}+\varepsilon {\text{.}}} {\displaystyle y_{t}=a+bx_{1t}+cx_{2t}+\varepsilon {\text{.}}}

Si on sépare en deux groupes le modèle, on a :

y t = a 1 + b 1 x 1 t + c 1 x 2 t + ε . {\displaystyle y_{t}=a_{1}+b_{1}x_{1t}+c_{1}x_{2t}+\varepsilon .\,} {\displaystyle y_{t}=a_{1}+b_{1}x_{1t}+c_{1}x_{2t}+\varepsilon .\,}

et

y t = a 2 + b 2 x 1 t + c 2 x 2 t + ε . {\displaystyle y_{t}=a_{2}+b_{2}x_{1t}+c_{2}x_{2t}+\varepsilon {\text{.}}} {\displaystyle y_{t}=a_{2}+b_{2}x_{1t}+c_{2}x_{2t}+\varepsilon {\text{.}}}

L'hypothèse nulle du test de Chow nous dit que a1 = a2, b1 = b2, et c1 = c2.

Soient SC la somme des carrés des résidus estimés du modèle initial, S1 la somme des carrés des résidus estimés du premier groupe, et S2 la somme des carrés des résidus estimés du groupe 2. Les valeurs N1 et N2 représentent le nombre d'observations dans chaque groupe et k est le nombre total de paramétres à estimer (3 dans ce cas). Alors la statistique du test de Chow est égale à :

F = ( S C − ( S 1 + S 2 ) ) / k ( S 1 + S 2 ) / ( N 1 + N 2 − 2 k ) . {\displaystyle \mathrm {F} ={\frac {(\mathrm {S_{C}} -(\mathrm {S} _{1}+\mathrm {S} _{2}))/k}{(\mathrm {S} _{1}+\mathrm {S} _{2})/(\mathrm {N} _{1}+\mathrm {N} _{2}-2k)}}.} {\displaystyle \mathrm {F} ={\frac {(\mathrm {S_{C}} -(\mathrm {S} _{1}+\mathrm {S} _{2}))/k}{(\mathrm {S} _{1}+\mathrm {S} _{2})/(\mathrm {N} _{1}+\mathrm {N} _{2}-2k)}}.}

La statistique du test suit une loi de Fisher avec ν1 = k et ν2 = N1 + N2 - 2k degrés de liberté.

Article détaillé : Test de Fisher.

Références

[modifier | modifier le code]
  • (en) Howard E. Doran: Applied Regression Analysis in Econometrics. CRC Press 1989, (ISBN 0824780493), p. 146 (restricted online version (Google Books))
  • (en) Christopher Dougherty: Introduction to Econometrics. Oxford University Press 2007, (ISBN 0199280967), p. 194 (restricted online version (Google Books))
  • (en) Gregory C. Chow, « Tests of Equality Between Sets of Coefficients in Two Linear Regressions », Econometrica, vol. 28(3),‎ 1960, p. 591–605 (JSTOR 1910133)
  • (en) Explications sur le site de Stata : [1] [2] [3]
v · m
Index du projet probabilités et statistiques
Théorie des probabilités
Bases théoriques
Principes généraux
  • Axiomes des probabilités
  • Espace mesurable
  • Probabilité
  • Événement
  • Bon article Tribu
  • Indépendance
  • Variable aléatoire
  • Espérance
  • Bon article Variables iid
Convergence de lois
  • Théorème central limite
  • Loi des grands nombres
  • Théorème de Borel-Cantelli
Calcul stochastique
  • Marche aléatoire
  • Chaîne de Markov
  • Processus stochastique
  • Processus de Markov
  • Martingale
  • Mouvement brownien
  • Équation différentielle stochastique
Lois de probabilité
Lois continues
  • Loi exponentielle
  • Bon article Loi normale
  • Loi uniforme
  • Loi de Student
  • Loi de Fisher
  • Loi du χ²
Lois discrètes
  • Loi de Bernoulli
  • Bon article Loi binomiale
  • Loi de Poisson
  • Loi géométrique
  • Loi hypergéométrique
Mélange entre statistiques et probabilités
  • Intervalle de confiance
Interprétations de la probabilité
  • Bayésianisme
Théorie des statistiques
Statistiques descriptives
Bases théoriques
  • Une statistique
  • Caractère
  • Échantillon
  • Erreur type
  • Intervalle de confiance
  • Fonction de répartition empirique
  • Théorème de Glivenko-Cantelli
  • Inférence bayésienne
  • Régression linéaire
  • Méthode des moindres carrés
  • Analyse des données
  • Corrélation
Tableaux
  • Tableau de contingence
  • Tableau disjonctif complet
  • Table de Burt
Visualisation de données
  • Histogramme
  • Diagramme à barres
  • Graphique en aires
  • Diagramme circulaire
  • Treemap
  • Boîte à moustaches
  • Diagramme en violon
  • Nuage de points
  • Graphique à bulles
  • Diagramme en cascade
  • Graphique en entonnoir
  • Diagramme de Kiviat
  • Corrélogramme
  • Graphique en forêt
  • Diagramme branche-et-feuille
  • Heat map
  • Sparkline
Paramètres de position
  • Moyenne arithmétique
  • Mode
  • Médiane
  • Quantile
    • Quartile
    • Décile
    • Centile
Paramètres de dispersion
  • Étendue
  • Écart moyen
  • Variance
  • Écart type
  • Déviation absolue moyenne
  • Écart interquartile
  • Coefficient de variation
Paramètres de forme
  • Coefficient d'asymétrie
  • Coefficient d'aplatissement
Statistiques inductives
Bases théoriques
  • Hypothèse nulle
  • Estimateur
  • Signification statistique
  • Sensibilité et spécificité
  • Courbe ROC
  • Nombre de sujets nécessaires
  • Valeur p
  • Contraste (statistiques)
  • Statistique de test
  • Taille d'effet
  • Puissance statistique
Tests paramétriques
  • Test d'hypothèse
  • Test de Bartlett
  • Test de normalité
  • Test de Fisher d'égalité de deux variances
  • Test d'Hausman
  • Test d'Anderson-Darling
  • Test de Banerji
  • Test de Durbin-Watson
  • Test de Goldfeld et Quandt
  • Test de Jarque-Bera
  • Test de Mood
  • Test de Lilliefors
  • Test de Wald
  • Test T pour des échantillons indépendants
  • Test T pour des échantillons appariés
  • Test de corrélation de Pearson
Tests non-paramétriques
  • Test U de Mann-Whitney
  • Test de Kruskal-Wallis
  • Test exact de Fisher
  • Test de Kolmogorov-Smirnov
  • Test de Shapiro-Wilk
  • Test de Chow
  • Test de McNemar
  • Test de Spearman
  • Tau de Kendall
  • Test Gamma
  • Test des suites de Wald-Wolfowitz
  • Test de la médiane
  • Test des signes
  • ANOVA de Friedman
  • Concordance de Kendall
  • Test Q de Cochran
  • Test des rangs signés de Wilcoxon
  • Test de Sargan
Application
  • Économétrie
  • Mécanique statistique
  • Jeu de hasard
  • Biomathématique
  • Biostatistique
  • Mathématiques financières
  • icône décorative Portail des probabilités et de la statistique
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Test_de_Chow&oldid=185616914 ».
Catégories :
  • Économétrie
  • Test statistique
  • Régression
Catégories cachées :
  • Page utilisant des données de Wikidata à traduire de l'anglais
  • Page utilisant P31
  • Page utilisant P138
  • Article à illustrer Méthode scientifique
  • Article utilisant l'infobox Méthode scientifique
  • Article utilisant une Infobox
  • Portail:Probabilités et statistiques/Articles liés
  • Portail:Mathématiques/Articles liés
  • Portail:Sciences/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id