Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Modèle graphique — Wikipédia
Modèle graphique — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Modèle graphique
Un exemple de modèle graphique. Ici D dépend de A, B et C. C dépend de B et D.
Type
Modèle statistiqueVoir et modifier les données sur Wikidata

modifier - modifier le code - modifier WikidataDocumentation du modèle

Un modèle graphique est une représentation d'objets probabilistes. C'est un graphe qui représente les dépendances de variables aléatoires.

Ces modèles sont notamment utilisés en apprentissage automatique.

Description

[modifier | modifier le code]

Un modèle graphique est un graphe orienté ou non orienté, c'est-à-dire un ensemble, les « sommets », et des liens entre les sommets, les « arêtes ». Chaque sommet représente une variable aléatoire et chaque arête représente une dépendance de ces variables[1]. Dans l'exemple ci-contre, il y a 4 variables aléatoires A, B, C et D. L'arc de A vers D signifie que D dépend de A.

Deux exemples importants de modèles graphiques sont les réseaux bayésiens, qui donnent des graphes orientés acycliques, et les champs aléatoires de Markov qui sont non orientés[1].

Bibliographie

[modifier | modifier le code]
  • Edoardo M. Airoldi, « Getting Started in Probabilistic Graphical Models », PLoS Computational Biology, vol. 3, no 12,‎ 2007, e252 (PMID 18069887, PMCID 2134967, DOI 10.1371/journal.pcbi.0030252, lire en ligne)

Notes et références

[modifier | modifier le code]
  1. ↑ a et b Christopher M. Bishop, « Graphical models », dans Pattern recognition and machine learning, vol. 4, 2006 (lire en ligne), chap. 4.

Articles connexes

[modifier | modifier le code]
  • Propagation des convictions
  • Collisionneur (statistiques)
  • Modèles à base d’énergie

Liens externes

[modifier | modifier le code]
  • Kevin Murphy, « A Brief Introduction to Graphical Models and Bayesian Networks », sur Université de la Colombie-Britannique, 1998
  • Francis Bach et Guillaume Obozinski, « Introduction to Graphical Models », 2014
v · m
Apprentissage automatique et exploration de données
Paradigmes
  • Apprentissage supervisé
  • Auto-supervisé
  • Semi-supervisé
  • Non supervisé
  • Apprentissage par renforcement
  • Transfert
  • Incrémental
Problèmes
  • Classement
  • Clustering
  • Détection d'anomalies
  • Optimisation en ligne
  • Modèle génératif
  • Régression
  • Règle d'association
  • Réduction de dimensions
    • Analyse factorielle
    • Sélection de caractéristique
    • Extraction de caractéristique
Supervisé
Classement
  • Arbre de décision
  • k-NN
  • U-matrix
  • CRF
  • Régression logistique
Régression
  • Modèle linéaire généralisé
    • Régression linéaire
    • Régression de Poisson
    • Modèle probit
  • Analyse discriminante linéaire
  • Machine à vecteurs de support
Prédiction structurée
  • Modèle graphique
    • Classification naïve bayésienne
    • Réseau bayésien
    • Modèle de Markov caché
Réseau de neurones
artificiels
  • Récurrents
    • Rétropropagation à travers le temps
    • Calcul par réservoir
  • à action directe
    • Rétropropagation du gradient
    • Apprentissage profond
    • Perceptron
    • Perceptron multicouche
    • Réseau neuronal convolutif
    • Attention
  • Réseau de neurones à impulsions
Non supervisé et
auto-supervisé
Découverte de structures
  • Clustering
    • Regroupement hiérarchique
    • K-moyennes
    • Algorithme espérance-maximisation
    • DBSCAN
    • OPTICS
  • Règle d'association
Réduction de dimensions
  • ACP
  • ACP à noyaux
  • Analyse en composantes indépendantes
  • Analyse canonique des corrélations
  • Analyse canonique à noyaux
  • t-SNE
  • Réseau de neurones artificiels
    • Auto-encodeur
IA générative
et modèle génératif
  • Réseau de neurones artificiels
    • Réseaux antagonistes génératifs
      • Classique
      • de Wasserstein)
    • Auto-encodeur variationnel
    • Réseau de Hopfield
    • Machine de Boltzmann restreinte
    • Cartes de Kohonen
    • Transformeur
Métaheuristique
d'optimisation
  • Stratégie d'évolution et génétique
    • NEAT
    • HyperNEAT
  • Essaims
  • Apprentissage ensembliste
    • Forêts aléatoires
    • Boosting
Théorie
  • Apprentissage PAC
  • Complexité de Rademacher
  • Dilemme biais-variance
  • Hypothèse de la variété
  • Théorie de Vapnik-Chervonenkis
    • Pulvérisation
    • Dimension de Vapnik-Chervonenkis
  • Théorème de Cover
Logiciels
  • Keras
  • Microsoft Cognitive Toolkit
  • Scikit-learn
  • TensorFlow
  • Theano
  • Weka
  • PyTorch
  • icône décorative Portail des probabilités et de la statistique
  • icône décorative Portail de l'informatique théorique
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Modèle_graphique&oldid=216500688 ».
Catégories :
  • Apprentissage automatique
  • Probabilités
Catégories cachées :
  • Page utilisant P279
  • Article utilisant l'infobox Méthode scientifique
  • Article utilisant une Infobox
  • Portail:Probabilités et statistiques/Articles liés
  • Portail:Mathématiques/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Informatique théorique/Articles liés
  • Portail:Informatique/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id