Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. U-matrix — Wikipédia
U-matrix — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Page d’aide sur l’homonymie

Ne doit pas être confondu avec Matrice unitaire.

Cet article est une ébauche concernant l’informatique théorique.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Une U-matrix (unified distance matrix en anglais) est un concept d'apprentissage automatique, pour certains réseaux de neurones artificiels. Plus précisément, c'est une représentation d'une carte auto-adaptative où les distances euclidiennes entre les poids associés aux neurones voisins sont représentées par une image en tons de gris.

Les U-Matrix sont utilisées pour visualiser des données exprimées dans un espace de grandes dimensions sur image 2D[1].

Notes et références

[modifier | modifier le code]
  1. ↑ (en) Alfred Ultsch, H. Peter Siemon, Bernard Widrow (éditeur) et Bernard Angeniol (éditeur), Proceedings of the International Neural Network Conference (INNC-90), Paris, France, July 9–13, 1990, 1, Dordrecht, Netherlands, Kluwer, 1990 (ISBN 978-0-7923-0831-7 et 0-7923-0831-X, lire en ligne), « Kohonen's Self Organizing Feature Maps for Exploratory Data Analysis », p. 305–308

Liens externes

[modifier | modifier le code]
  • (en) Jaakko Hollmen, « U-matrix », sur Université Aalto, 1996
v · m
Apprentissage automatique et exploration de données
Paradigmes
  • Apprentissage supervisé
  • Auto-supervisé
  • Semi-supervisé
  • Non supervisé
  • Apprentissage par renforcement
  • Transfert
  • Incrémental
Problèmes
  • Classement
  • Clustering
  • Détection d'anomalies
  • Optimisation en ligne
  • Modèle génératif
  • Régression
  • Règle d'association
  • Réduction de dimensions
    • Analyse factorielle
    • Sélection de caractéristique
    • Extraction de caractéristique
Supervisé
Classement
  • Arbre de décision
  • k-NN
  • U-matrix
  • CRF
  • Régression logistique
Régression
  • Modèle linéaire généralisé
    • Régression linéaire
    • Régression de Poisson
    • Modèle probit
  • Analyse discriminante linéaire
  • Machine à vecteurs de support
Prédiction structurée
  • Modèle graphique
    • Classification naïve bayésienne
    • Réseau bayésien
    • Modèle de Markov caché
Réseau de neurones
artificiels
  • Récurrents
    • Rétropropagation à travers le temps
    • Calcul par réservoir
  • à action directe
    • Rétropropagation du gradient
    • Apprentissage profond
    • Perceptron
    • Perceptron multicouche
    • Réseau neuronal convolutif
    • Attention
  • Réseau de neurones à impulsions
Non supervisé et
auto-supervisé
Découverte de structures
  • Clustering
    • Regroupement hiérarchique
    • K-moyennes
    • Algorithme espérance-maximisation
    • DBSCAN
    • OPTICS
  • Règle d'association
Réduction de dimensions
  • ACP
  • ACP à noyaux
  • Analyse en composantes indépendantes
  • Analyse canonique des corrélations
  • Analyse canonique à noyaux
  • t-SNE
  • Réseau de neurones artificiels
    • Auto-encodeur
IA générative
et modèle génératif
  • Réseau de neurones artificiels
    • Réseaux antagonistes génératifs
      • Classique
      • de Wasserstein)
    • Auto-encodeur variationnel
    • Réseau de Hopfield
    • Machine de Boltzmann restreinte
    • Cartes de Kohonen
    • Transformeur
Métaheuristique
d'optimisation
  • Stratégie d'évolution et génétique
    • NEAT
    • HyperNEAT
  • Essaims
  • Apprentissage ensembliste
    • Forêts aléatoires
    • Boosting
Théorie
  • Apprentissage PAC
  • Complexité de Rademacher
  • Dilemme biais-variance
  • Hypothèse de la variété
  • Théorie de Vapnik-Chervonenkis
    • Pulvérisation
    • Dimension de Vapnik-Chervonenkis
  • Théorème de Cover
Logiciels
  • Keras
  • Microsoft Cognitive Toolkit
  • Scikit-learn
  • TensorFlow
  • Theano
  • Weka
  • PyTorch
  • icône décorative Portail des bases de données
  • icône décorative Portail de l'informatique théorique
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=U-matrix&oldid=183919568 ».
Catégories :
  • Réseau de neurones artificiels
  • Exploration de données
  • Informatique théorique
  • Neurone
Catégories cachées :
  • Wikipédia:ébauche informatique théorique
  • Portail:Bases de données/Articles liés
  • Portail:Informatique/Articles liés
  • Portail:Informatique théorique/Articles liés
  • Portail:Mathématiques/Articles liés
  • Portail:Sciences/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id