Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Module simple — Wikipédia
Module simple — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.

Cet article ne cite pas suffisamment ses sources (septembre 2023).

Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ».

En pratique : Quelles sources sont attendues ? Comment ajouter mes sources ?

Un module M sur un anneau A est dit simple ou irréductible si M n'est pas le module nul et il n'existe pas de sous-modules de M en dehors de {0} et M[1].

Exemples

[modifier | modifier le code]
  • Les ℤ-modules simples sont les groupes abéliens simples, c'est-à-dire les groupes cycliques d'ordre premier.
  • Les espaces vectoriels simples (sur un corps non nécessairement commutatif) sont les droites vectorielles.
  • Étant donné un anneau A et I un idéal à gauche non nul de A, I est un A-module simple si et seulement si I est un idéal minimal à gauche.

Structure des modules simples

[modifier | modifier le code]

Soient A un anneau unitaire et M un A-module simple.

  • Alors M est un A-module monogène, engendré par n'importe quel élément non nul x de M. En effet, Ax est un sous-module non nul de M, donc c'est M. La réciproque est fausse, par exemple le ℤ-module ℤ est monogène (engendré par 1) mais pas simple.
  • Soit x un élément non nul M. Alors l'ensemble des éléments a de A tels que ax = 0 est un idéal à gauche maximal I de A, et l'application a↦ax de A dans M est A-linéaire, et par passage au quotient, définit un isomorphisme de A-modules de A/I sur M.
  • Réciproquement, pour tout idéal à gauche J de A, pour que le A-module A/J soit simple, il faut et il suffit que J soit un élément maximal de l'ensemble des idéaux à gauche de A différent de A.

Propriétés

[modifier | modifier le code]
  • Les modules simples sont les modules de longueur 1.
  • Un module simple est un module indécomposable, c'est-à-dire qu'il n'est pas isomorphe à une somme directe de deux modules non nuls. La réciproque est fausse : par exemple, les ℤ-modules de type fini indécomposables sont ℤ et les groupes cycliques d'ordre pn avec p premier et n > 0.
  • Contrairement à ce qui se passe pour des espaces vectoriels, un module non nul peut ne pas posséder de sous-module simple. Par exemple, tous les sous-modules non nuls de ℤ sont isomorphes à ℤ donc non simples.

Lemme de Schur

[modifier | modifier le code]

Soient A un anneau, M et N des A-modules et f une application A-linéaire de M dans N. Si M est simple, alors f est soit nulle, soit injective (en effet, le noyau de f est un sous-module de M, donc {0} ou M). Si N est simple, alors f est soit surjective, soit nulle (en effet, l'image de f est un sous module de N, donc {0} ou N)[2].

Si un A-module est simple alors l'anneau de ses endomorphismes est un corps, mais la réciproque est fausse : le ℤ-module ℚ n'est pas simple, et pourtant tout endomorphisme non nul du groupe abélien ℚ est inversible.

Soient K un corps algébriquement clos, A une K-algèbre de dimension finie non nulle et M un A-module simple. Alors l'anneau des endomorphismes de A-module de M est canoniquement isomorphe à K.

Notes et références

[modifier | modifier le code]
  1. ↑ Berhuy 2012, p. 7
  2. ↑ (en) Anthony W. Knapp, Basic Algebra: Digital Second Edition, Anthony W. Knapp, 2016, 735 p. (ISBN 978-1-4297-9998-0, DOI 10.3792/euclid/9781429799980, lire en ligne), p. 559

Voir aussi

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]
  • Groupe simple : une définition analogue pour les groupes
  • Module semi-simple
  • Anneau simple
  • Théorème de densité de Jacobson (en)

Bibliographie

[modifier | modifier le code]
  • Grégory Berhuy, Modules : Théorie, pratique... et un peu d'arithmétique, Paris, Calvage & Mounet, 12 juillet 2012, 388 p. (ISBN 978-2-91-635225-1)
  • icône décorative Portail de l’algèbre
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Module_simple&oldid=223041997 ».
Catégorie :
  • Module
Catégories cachées :
  • Article manquant de références depuis septembre 2023
  • Article manquant de références/Liste complète
  • Article contenant un appel à traduction en anglais
  • Portail:Algèbre/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Mathématiques/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id