Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Groupe quotient — Wikipédia
Groupe quotient — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Projection canonique sur un groupe quotient)

Cet article est une ébauche concernant l’algèbre.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

En théorie des groupes, le quotient d'un groupe est un groupe obtenu en identifiant des éléments équivalents dans un groupe plus grand. Par exemple, le groupe cyclique des entiers modulo n muni de l'addition peuvent être obtenu en identifiant les entiers égaux à un multiple de n près dans le groupe des entiers relatifs.

Plus généralement, à partir d'un groupe G et d'un sous-groupe H de G, on peut définir une loi de groupe sur l'ensemble G/H des classes de G suivant H, à condition que le sous-groupe H soit normal, c'est-à-dire que les classes à droite soient égales aux classes à gauche (gH = Hg).

Partition d'un groupe en classes modulo un sous-groupe

[modifier | modifier le code]

Étant donné un élément g de G, nous définissons la classe à gauche gH = {gh | h ∈ H}. Comme g possède un élément symétrique, l'ensemble gH a le même cardinal que H. De plus, tout élément de G appartient à exactement une seule classe à gauche de H ; les classes à gauche sont les classes d'équivalence de la relation d'équivalence définie par g1 ~ g2 si et seulement si g1–1g2 ∈ H. Le nombre de classes à gauche de H est appelé l'indice de H dans G et est noté [G : H]. Dans le cas d'un groupe fini, le théorème de Lagrange sur la cardinalité des sous-groupes, et la formule des classes permettent de voir que cet indice est fini et est un diviseur de l'ordre du groupe G.

Les classes à droite sont définies de manière analogue : Hg = {hg | h ∈ H}. Elles sont aussi les classes d'équivalence pour une relation d'équivalence convenable et leur nombre est aussi égal à [G : H].

Définition

[modifier | modifier le code]

Si pour tout g ∈ G, gH = Hg, alors le sous-groupe H est dit normal. Dans ce cas (et dans ce cas seulement), la loi de groupe de G est compatible avec ~, ce qui permet de définir une multiplication sur les classes par

( g 1 H ) ⋅ ( g 2 H ) = ( g 1 g 2 ) H {\displaystyle (g_{1}H)\cdot (g_{2}H)=(g_{1}g_{2})H} {\displaystyle (g_{1}H)\cdot (g_{2}H)=(g_{1}g_{2})H}.

Cela donne à l'ensemble quotient une structure de groupe ; ce groupe est appelé groupe quotient de G par H (ou parfois groupe des facteurs) et est noté G/H. L'application f : G → G/H, g ↦ gH est alors un morphisme de groupes. L'image directe f(H) n'est constituée que de l'élément neutre de G/H, à savoir la classe eH = H. L'application f est appelée morphisme canonique ou projection canonique.

Les sous-quotients d'un groupe G sont par définition les quotients de sous-groupes de G. Les sous-groupes de quotients de G en font partie.

Exemples

[modifier | modifier le code]
  • Considérons l'ensemble ℤ des entiers relatifs et le sous-groupe 2ℤ constitué des entiers pairs. Alors le groupe quotient ℤ/2ℤ est constitué de deux éléments (pour la relation de congruence), représentant la classe des nombres pairs et la classe des nombres impairs.
  • L'ensemble ℝ des nombres réels, considéré comme groupe additif, et son sous-groupe 2πℤ permettent de définir un groupe quotient utilisé pour la mesure des angles orientés.

Propriétés

[modifier | modifier le code]
  • G/G est un groupe trivial, c'est-à-dire réduit à l'élément neutre.
  • Si {e} désigne le sous-groupe trivial de G, G/{e} est canoniquement isomorphe à G.
  • Si H est normal, l'application de G dans G/H est un morphisme surjectif, appelé projection canonique de G sur G/H . Son noyau est H.
  • Plus généralement, si f : G → G' est un morphisme de groupes, il existe une suite exacte : G → G'→ G'/Imf → 1.
  • Si G est abélien, cyclique, nilpotent ou résoluble, il en sera de même pour G/H.
  • Le produit C1∙C2 de deux classes (défini ci-dessus en écrivant Ci sous la forme giH) coïncide avec l'ensemble des produits d'un élément de C1 par un élément de C2.
  • G/H est abélien si, et seulement si, H contient tous les éléments de la forme xyx-1y-1, où x,y appartiennent à G[1], autrement dit tous les commutateurs de G.

Factorisation des morphismes

[modifier | modifier le code]
Article détaillé : Théorèmes d'isomorphisme.

On peut caractériser les groupes quotients par la propriété fondamentale suivante :

Soit f : G → G' un morphisme de groupes. Soit H le noyau de f. Alors H est distingué et f se « factorise » en un morphisme injectif f : G/H → G' tel que f ∘ p = f, où p est la projection de G sur G/H.

Histoire

[modifier | modifier le code]

D'après Bourbaki, c'est chez Jordan que la notion de groupe quotient apparaît pour la première fois[2].

L'expression « quotient des groupes G et H » a été introduite en 1889 par Otto Hölder, qui proposait la notation G|H [3].

Notes et références

[modifier | modifier le code]
  1. ↑ Serge Lang (traduction de Braemer et Richard), Structures algébriques, Paris, InterEditions, 1976, p.34, Lang se sert ici de cette propriété pour montrer que Sn n'est pas résoluble pour n>4
  2. ↑ N. Bourbaki, Algèbre I, Chapitres 1 à 3, Paris, 1970, p. I.164. Voir aussi Dirk Schlimm, « On Abstraction and the Importance of Asking the Right Research Questions: Could Jordan Have Proved the Jordan-Hölder Theorem ? », Erkenntnis, vol. 68, No. 3, mai 2008, pp. 409-420, sommaire consultable sur JSTOR, selon qui Jordan utilise la notion de groupe quotient dans un article de 1873.
  3. ↑ (de) O. Hölder, « Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen (Zur Reduction der algebraischen Gleichungen) », Math. Ann.,‎ 1889, p. 31, consultable sur le site de l'université de Göttingen. (Référence donnée par (en) W. Burnside, Theory of Groups of Finite Order, Dover, 1911 (réimpr. 2004), p. 39))

Articles connexes

[modifier | modifier le code]
  • Anneau quotient
  • Module quotient
  • Présentation d'un groupe
  • icône décorative Portail de l’algèbre
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Groupe_quotient&oldid=228476140#Définition ».
Catégorie :
  • Théorie des groupes
Catégories cachées :
  • Wikipédia:ébauche algèbre
  • Portail:Algèbre/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Mathématiques/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id