Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Dual d'un module — Wikipédia
Dual d'un module — Wikipédia 👆 Click Here! Read More..
Un article de Wikipédia, l'encyclopédie libre.

En algèbre commutative et plus généralement en théorie des anneaux, la notion de dual d'un module généralise celle de dual d'un espace vectoriel.

Le dual d'un module A par rapport à un module B (sur un anneau R) est l'ensemble des homomorphismes de A dans B. Il est noté Hom(A,B). Si le module B n'est pas spécifié, par défaut, on considère qu'il s'agit de l'anneau R. Le dual Hom(A,R) est appelé simplement « dual de A »[1] et noté A*[2].

Définition

[modifier | modifier le code]

Si A et B sont deux modules à gauche sur un anneau R, l'ensemble Hom(A,B) des morphismes de A dans B est un groupe pour l'addition.

Si B est non seulement un module à gauche mais un bimodule (c'est-à-dire s'il est aussi muni d'une structure de module à droite, compatible avec celle à gauche) alors Hom(A,B) est naturellement muni d'une structure de module à droite. C'est toujours le cas si l'anneau R est commutatif. S'il ne l'est pas, on peut considérer le bimodule particulier B = R :

Le dual A* d'un R-module à gauche A est le R-module à droite Hom(A,R).

(De même, le dual d'un R-module à droite A est le R-module à gauche Hom(A,R).)

Les éléments du dual A* sont donc les formes linéaires sur A[2].

Propriétés

[modifier | modifier le code]

Bidual

[modifier | modifier le code]

Le bidual de A est le dual du dual de A. Il existe un morphisme naturel de modules de A dans son bidual, mais le bidual de A n'est généralement pas isomorphe à A[1], même dans le cas des espaces vectoriels.

Somme et produit directs

[modifier | modifier le code]

Conformément à leur définition générale, le produit direct et la somme directe de modules vérifient la propriété universelle suivante :

Hom ⁡ ( A , ∏ j B j ) ≃ ∏ j Hom ⁡ ( A , B j )   , Hom ⁡ ( ⨁ i A i , B ) ≃ ∏ i Hom ⁡ ( A i , B )   . {\displaystyle \operatorname {Hom} (A,\prod _{j}B_{j})\simeq \prod _{j}\operatorname {Hom} (A,B_{j})\ ,\qquad \operatorname {Hom} (\bigoplus _{i}A_{i},B)\simeq \prod _{i}\operatorname {Hom} (A_{i},B)\ .} {\displaystyle \operatorname {Hom} (A,\prod _{j}B_{j})\simeq \prod _{j}\operatorname {Hom} (A,B_{j})\ ,\qquad \operatorname {Hom} (\bigoplus _{i}A_{i},B)\simeq \prod _{i}\operatorname {Hom} (A_{i},B)\ .}

Dual de l'anneau

[modifier | modifier le code]
  • Hom(R, B) = B. En particulier, Hom(R, R) = R. L'anneau R est son propre dual.
  • Plus généralement, d'après le paragraphe précédent, Hom(Rj, B) = Bj[1].

Notes et références

[modifier | modifier le code]
  1. ↑ a b et c [1]
  2. ↑ a et b (en) « dual module », sur PlanetMath.
v · m
Théorie des anneaux
Structures
  • Anneau unitaire
  • Pseudo-anneau
  • Demi-anneau
  • Anneau commutatif
  • Anneau de polynômes
  • Ordre
  • Algèbre de Weyl
  • Idéal
  • Corps des fractions
  • Module sur un anneau
  • Algèbre sur un anneau
  • Catégorie des anneaux
  • Spectre
Propriétés arithmétiques
  • Anneau adélique
  • Anneau local
  • Anneau de Dedekind (non commutatif)
  • Anneau sans diviseur de zéro
  • Anneau principal (non commutatif)
  • Anneau euclidien (non commutatif)
  • Anneau factoriel
  • Anneau à PGCD
  • Anneau de Bézout
  • Anneau de Schreier
  • Anneau de Goldman
  • Anneau intègre
  • Anneau de valuation discrète
  • Anneau d'Ore
  • Anneau réduit
  • Idéal premier
  • Idéal maximal
  • Idéal primaire
  • Idéal primitif (en)
Chaînes d'idéaux
  • Anneau noethérien
  • Anneau artinien
  • Anneau de Jaffard
  • Anneau cohérent
  • Anneau de Goldie
  • Anneau de Jacobson
  • Anneau de Gorenstein
  • Anneau caténaire
Mesures
  • Dimension de Krull
  • Dimension homologique
  • Longueur d'un module
  • Profondeur d'un module
Modules
  • Catégorie des modules
  • Module de type fini
  • Module simple
  • Module semi-simple
  • Module monogène
  • Module libre
  • Module quotient
  • Facteur direct
  • Dual d'un module
  • Annulateur
  • Produit tensoriel
  • Puissance extérieure
  • Bimodule
  • Module artinien
  • Anneau de Cohen-Macaulay
  • Anneau des entiers
Fonctorialité
  • Anneau d'Hermite
  • Module projectif
  • Module injectif
  • Module plat
  • Module fidèle
  • Anneau régulier
Opérations
  • Morphisme d'anneaux
  • Localisation
  • Somme directe
  • Produit tensoriel
  • Représentation
  • Quotient
  • Extension d'anneau (en)
  • Radical d'un idéal
  • Nilradical
  • Radical de Jacobson
  • Going up et going down
  • icône décorative Portail de l’algèbre
Ce document provient de « https://fr.teknopedia.teknokrat.ac.id/w/index.php?title=Dual_d%27un_module&oldid=197479055 ».
Catégorie :
  • Module
Catégories cachées :
  • Article contenant un appel à traduction en anglais
  • Portail:Algèbre/Articles liés
  • Portail:Sciences/Articles liés
  • Portail:Mathématiques/Articles liés

  • indonesia
  • Polski
  • الرية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصر
  • Nederlands
  • 本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українска
  • Tiếng Việt
  • Winaray
  • 中文
  • Русски
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id